			K20P U345
Reg. No. :	***************************************		TWALE TO
Name :	***************************************	(3)	18/00
Il Semester N	MATH	sion Onwards	22111
	MAT 2006 : Advan	ced Abstract Algeb	ra
Time: 3 Hours			Max. Marks: 80
	PAF	A – TF	
Answer any 4	questions. Each question	carries 4 marks.	
1. Find all the	units in Z[i].		
2. Prove that	$\sqrt{1+\sqrt{3}}$ is algebraic of deg	ree 4 over Q.	
3. State Eucli	dean algorithm.		
4. Show algel	braically that it is possible t	o construct an angle o	of 30°.
5. Find the sp	plitting field of $x^3 - 2$ over Q		
6. Describe th	ne group of the polynomial	$(x^3 - 1) \in \mathbb{Q}[x]$ over \mathbb{Q}	(4×4=16)
	PAF	RT – B	
Answer 4 quest	tions without omitting any l	Jnit. Each question ca	arries 16 marks.
	Un	it – I	
7. a) State an	nd prove Gauss's Lemma.		5
4	nat if D is a UFD, then D[x]		7
c) Prove th	nat every Euclidean domain	i is a PID.	4
8 a) Prove th	at Ziil is an Euclidean dom	nain	8

b) Let p be an odd prime in $\mathbb Z$. Prove that p = $a^2 + b^2$ for integers a and b in $\mathbb Z$

9. a) Let F be a field and let f(x) be a non constant polynomial in F[x]. Prove that there exists an extension field E of F and an $\alpha \in E$ such that $f(\alpha) = 0$.

if and only if $p \equiv 1 \pmod{4}$.

b) Show that $x^3 + x^2 + 1$ is irreducible over \mathbb{Z}_2 .

8

13

3

Unit - II

10.	a)	If E is a finite extension of a field F and K is a finite extension of E, then prove that K is a finite extension of F and [K:F] = [K:E] [E:F].	11
	b)	Prove that a field is algebraically closed if and only if every non constant polynomial in $F[x]$ factors in $F[x]$ into linear factors.	5
11.	a)	Prove that the set of all constructible real numbers forms a subfield F of the field of real numbers.	10
	b)	Prove that the field $GF(p^n)$ of p^n elements exists for every prime power p^n .	6
12.	a)	Prove that complex zeros of polynomials with real coefficients occur in conjugate pairs.	5
	b)	Let F be a finite field of characteristic p. Prove that the map $\sigma_p: F \to F$ defined by $\sigma_p(a) = a^p$ for $a \in F$ is an automorphism of F. Also prove that $F_{\{\!\!\!/\!\!\!\!G_a\}} \cong \mathbb{Z}_p$.	
	c)	Find primitive 10th roots of unity in \mathbb{Z}_{11} .	4
		Unit – III	
13.	a)	Prove that a field E, where $F \le E \le \overline{F}$ is a splitting field over F if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself and thus induces an automorphism of E leaving F fixed.	12
	b)	If $F \le E \le K$, where K is a finite extension field of the field F, then prove that $\{K:F\} = \{K:E\}\{E:F\}$.	4
14.	a)	Prove that every field of characteristic zero is perfect.	5
	b)	State and prove primitive element theorem.	8
	C)	Find the degree of the splitting field of $x^4 - 1$ in $\mathbb{Q}[x]$ over \mathbb{Q} .	3
15.	a)	State main theorem of Galois theory.	6
		Let K be a finite normal extension of F and let E be an extension of F, where $F \le E \le K \le \overline{F}$. Prove that K is a finite normal extension of E and G(K/E) is precisely the subgroup of G(K/F) consisting of all those automorphisms that leave E fixed. Also prove that two automorphisms σ and τ in G(K/F) induce the same automorphism of E onto a subfield of \overline{F} if and only if they are in the same left coset of G(K/E) in G(K/F).	10
		(4×16=	64)