

Reg.	No.	:	
------	-----	---	--

Name :

II Semester M.Sc. Degree (CBSS - Reg./Suppl./Imp.) Examination, April 2020

(2017 Admission Onwards)

MAT2C08 - Advanced Topology 100

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this part. Each question carries 4 marks: (4×4=16)

- Give an example, with proper reasoning, of a bounded metric space that is not compact.
- Is a continuous function from a compact metric space to a metric space always uniformly continuous? Justify your answer.
- 3. Show that regularity is a topological property.
- Is the topological space (X, T) normal, where X = {1, 2, 3, 4} and T = {φ, {1}, {1, 2}, {1, 2, 3}, X}? Justify your answer.
- Show that a T₁ space, which can be imbedded as a subspace of I°, is a separable metric space.
- 6. Let (X_n, d_n) be a metric space for each $n \in \mathbb{N}$ and let $X = \prod_{n \in \mathbb{N}} X_n$. Prove that $d(x, y) = \sum_{n=1}^{\infty} \frac{d_n(x_n, y_n)}{2^n} \text{ for } x, y \in X \text{ is a metric on } X.$

PART - B

Answer any four questions from this part without omitting any unit. Each question carries 16 marks:

 $(4 \times 16 = 64)$

Unit - I

- a) Prove that every open cover of a metric space with the Bolzano-Weierstrass property has a Lebesgue number.
 - Prove that a metric space is compact if and only if it is complete and totally bounded.

K20P 0348

- 8. a) Show that the product of two compact spaces is compact.
 - b) Show that compactness is a topological property.
 - c) Give an example, with proper reasoning, of a compact set that is not closed.
- a) Prove that every closed subspace of a locally compact Hausdorff space is locally compact.
 - b) Let X be a locally compact space. If there is an open continuous function from X onto Y, then show that Y is locally compact.
 - Give an example, with proper reasoning of a compact set that is not sequentially compact.

Unit - II

- 10. a) Give an example, with proper reasoning, of a T₁ space that is not T₂.
 - b) Let X be a topological space and Y a Hausdorff space. If $f: X \rightarrow Y$ is continuous, then prove that $\{(x_1, x_2) \in X \times X : f(x_1) = f(x_2)\}$ is a closed set.
 - c) Prove that a T, space is regular if and only if for each $p \in X$ and each neighbourhood U of p, there is a neighbourhood V of p such that $\overline{V} \subseteq U$.
- 11. a) Let $\{(X_{\alpha}, T_{\alpha}) : \alpha \in \wedge\}$: be a family of topological spaces with $X = \prod_{\alpha \in A} X_{\alpha}$. Prove that (X, T) is regular if and only if (X_{α}, T_{α}) is regular for each $\alpha \in \wedge$.
 - b) Let (X, ≤) be a well-ordered set and let T denote the order topology on X. Prove that (X, T) is a normal space.
- a) Prove that a T₁ space is completely normal if and only if each of its subspace is normal.
 - b) Prove that every regular Lindelof space is normal.

Unit - III

- 13. a) State and prove Urysohn's Lemma.
 - b) Prove that the set of dyadic numbers in I is dense in I.
- 14. a) State and prove Tychonoff theorem.
 - b) Prove that, if (X, T) is a T₁, regular and second countable space, then X can be imbedded as a subspace of I^{to}.
 - c) Show that the space I[®] is mertrizable.
- 15. a) For two spaces (X, T). (Y, U), show that the relation defined by f≃g if f is homotopic to g is an equivalence relation on C(X, Y).
 - b) Let (X, T) be a topological space and $x_0 \in X$. Prove that the operation α defined on $\pi_1(X, x_0)$ by $[\alpha] \circ [\beta] = [\alpha * \beta]$ is associative.