K20P 0350

Max. Marks: 80

Reg. No	. :		
---------	-----	--	--

Name :

II Semester M.Sc. Degree (CBSS-Reg./Suppl./Imp.) Examination, April 2020
(2017 Admission Onwards)

MATHEMATICS

MAT2C10: Partial Differential Equations and Integral Equations

Time: 3 Hours

PART - A

Answer any four questions from this Part. Each question carries 4 marks. (4×4=16

- 1. Write the partial differential equation of $z = F\left(\frac{xy}{z}\right)$ by eliminating the arbitrary function F.
- 2. Find the general integral of the partial differential equation yzp + xzq = xy.
- 3. State Green's theorem and write the conditions of the functions involved.
- 4. State Cauchy problem and give an example.
- Define separable Kernel. Write an example of a Fredholm integral equation involving separable kernel.
- 6. Convert the differential equation y'' + 2y = 0 with the conditions y(0) = 0, y'(0) = 0 to an integral equation.

PART - B

Answer any four questions from this Part, without omitting any Unit. Each question carries 16 marks. (4×16=64)

Unit - 1

- 7. a) Find the general integral of the partial differential equation $z_1 + zz_2 = 0$. Also verify that the obtained solution is unbounded as t tends to 1.
 - b) Solve the partial differential equation $z^2 + zu_x u_x^2 u_y^2 = 0$ using Jacobi method.

P.T.O.

K20P 0350

 a) Prove that there exist an integrating factor for a Pfaffian differential equation in two variables.

-2-

- b) Verify that the Pfaffian differential equation yzdx + xzdy + xydz = 0 is exact.
 Also find its integral.
- a) Define compatible system of first order partial differential equations in a domain. Also write the condition that this compatible system is integrable.
 - b) Prove that the system of equations $f = p^2 + q^2 1 = 0$; $g = (p^2 + q^2) x pz = 0$ are compatible and find the one-parameter family of common solutions.

Unit - 2

- 10. a) Write the general form of a second order semi-linear partial differential equation. Based on different conditions, give one example of Hyperbolic, Parabolic and Elliptic type of a second order semi-linear partial differential equation.
 - b) Reduce the equation $y^2u_{xx} 2xyu_{xy} + x^2u_{yy} = \frac{y^2}{x}u_x + \frac{x^2}{y}u_y$ to a canonical form and solve it.
- 11. a) Find the d' Alembert's solution of the one-dimensional wave equation

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} \text{ with initial conditions } y \ (x, \, 0) = f \ (x), \ y_1(x, \, 0) = g \ (x), \, -\infty < x < \infty,$$
 $t > 0.$

- b) Write the characteristic curves of the above one-dimensional wave equation.
- 12. a) Prove that the solution of Neumann problem is unique up to the addition of a constant.
 - b) Solve the heat conduction equation $u_{tt} c^2 u_{xx} = F(x, t)$, 0 < x < l, t > 0 satisfying the initial conditions u(x, 0) = f(x), 0 < x < l, $u_t(x, 0) = g(x)$, 0 < x < l, u(0, t) = u(l, t) = 0, t > 0 by making use of Duhamel's principle. Also write the uniqueness condition for the obtained solution.

K20P 0350

Unit - 3

- 13. Transform the differential equation $\frac{d^2y}{dx^2} + xy = 1$ with the condition y (0) = 0, y (*l*) =1 to a Fredholm integral equation using Green's function.
- 14. a) Solve the Fredholm integral equation $y(x) = \lambda \int_0^1 (1 3x\xi)y(\xi)d\xi + F(x)$ in the following two cases.
 - i) F(x) = 0.
 - ii) F(x) = x.
 - b) Find out the eigen values and the eigen functions in the two cases of part (a).
- 15. a) Using iterative method, solve the Fredholm equation of the second kind $y(x) = 1 + \lambda \int_0^1 (1 3x\xi) y(\xi) \ d\xi$
 - b) For what condition, the solution of part (a) is convergent?