2 a) State and prove Schwarz's Lorania.

 $(1a_1-t)=(a)$ as the UA or Disagram a fact every path iff or (1-|x|-1)=0

A LIE Mopen in Cliffer prove that there is a rinquence IK_I at compact subsets.

ar amakem A indexion

The state of the s

white the most from the sales property of the contract of the

0 - in this lead to the first of the first o

of the territoria

K20P 0349

Reg. No. :

Name :

II Semester M.Sc. Degree (CBSS – Reg./Suppl./Imp.) Examination, April 2020
(2017 Admission Onwards)

MATHEMATICS

MAT2C09: Foundations of Complex Analysis

Time: 3 Hours Max. Marks: 80

PART - A

Answer any four questions. Each question carries 4 marks :

- 1. If $\gamma : [0, 1] \to \mathbb{C}$ is a closed rectifiable curve and $a \notin \{\gamma\}$, prove that $\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-a}$ is an integer.
- 2. State and prove Morera's theorem.
- 3. If f has an essential singularity at z = a, then prove that for every $\delta > 0$, $\{f[ann(a; 0, \delta)]\}^- = \mathbb{C}$.
- 4. Let f be analytic on an open set containing \overline{B} (a, R) and is one-one in B(a, R). If $\Omega = f[B(a, R)]$ and γ is the circle |z a| = R, prove that $f^{-1}(\omega)$ is defined for each ω in Ω .
- 5. If $\{f_n\}$ is a sequence in H(G) and f belongs to C(G, $\mathbb C$) such that $f_n \to f$ then prove that f is analytic and $f_n^{(k)} \to f^{(k)}$.
- 6. Suppose |z| < 1 and $p \ge 0$. Prove that, $|1 E_p(z)| \le |z|^{p+1}$. (4×4=16)

P.T.O.

K20P 0349

-2-

PART - B

Answer any four questions from this part without omiting any Unit. Each question carries 16 marks.

Unit -

- 7. a) Let G be a connected open set and let f : G →C be an analytic function. Prove the following are equivalent :
 - i) $f \equiv 0$
 - ii) there is a point a in G such that $f^{(n)}(a) = 0$ for each $n \ge 0$.
- iii) $\{z \in G : f(z) = 0\}$ has a limit point in G.
 - b) Let γ be a closed rectifiable curve in C. Prove that n(γ, a) is constant for a belonging to a component of C- { γ }.
 - a) Suppose f is analytic in B(a, R) and let f(a) = α. If f(z) α has a zero of order m at z = a, prove that there exist ∈ > 0 and δ > 0 such that for |ζ α| < δ the equation f(z) = ζ has exactly m simple roots in B(a, ∈).
 - b) State and prove Cauchy's Theorem-Third Version.
 - a) If G is simply connected and f : G→ C is analytic in G, prove that f has a primitive.
 - b) State and prove Goursat's theorem.

Unit - II

- 10. a) State and prove Residue theorem.
 - b) Show that $\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$
- 11. a) Let f be meromorphic in the region G with zeros $z_1,...,z_n$ and poles $p_1,...,p_m$ counted according to multiplicity. If g is analytic in G and γ is a closed curve in G with $\gamma \approx 0$ and not passing through any z_j or p_j , prove that

$$\frac{1}{2\pi i}\int\limits_{\gamma}g\frac{f'}{f}=\sum\limits_{j=1}^{n}g(z_{j})n(\gamma;\,z_{j})-\sum\limits_{j=1}^{m}g(p_{j})n(\gamma;\,p_{j})$$

- b) State and prove Rouche's theorem.
- c) State and prove maximum modulus theorem (First version).

-3-

K20P 0349

- 12. a) State and prove Schwarz's Lemma.
 - b) If |a| < 1 prove that the map ϕ_a defined by $\phi_a(z) = \frac{z-a}{1-\overline{a}z}$ is a bijective map from $D = \{z : |z| < 1\}$ to D. Also prove that ϕ_a maps ∂D to ∂D and $\phi_a'(a) = (1-|a|^2)^{-1}$.

Unit - III

- 13. a) If G is open in $\mathbb C$ then prove that there is a sequence $\{K_n\}$ of compact subsets of G such that $G = \bigcup_{n=1}^\infty K_n, K_n \subset \operatorname{int} K_{n+1}$ and every compact subset of G is a subset of K_n for some n.
 - b) Prove that for a given \in > 0 there exists a δ > 0 and a compact set K \subset G such that for f and g in C(G, Ω) sup {d(f(z), g(z)) : $z \in K$ } < δ implies $\rho(f, g) < \in$.
- 14. State and prove Arzela-Ascoli theorem.
- 15. a) Let G be a region which is not the whole plane and such that every non-vanishing analytic function on G has an analytic square root. If a∈ G, prove that there exists a one-one analytic function f on G such that f(a) = 0 and f(G) = D = {z : |z| < 1}.</p>
 - b) Let Re $z_n > -1$. Prove that the series $\sum \log (1 + z_n)$ converges absolutely iff the series $\sum z_n$ converges absolutely. (4×16=64)