

K19P 0349

Reg. No.:....

Name :

Il Semester M.Sc. Degree (Suppl.) Examination, April 2019 (2014 – 2016 Admission) MATHEMATICS

MAT 2C 06: Advanced Abstract Algebra

Time: 3 Hours

Max. Marks: 60

PART - A

Answer any 4 questions. Each question carries 3 marks.

- Prove that the ascending chain condition holds for the ideals in Z.
- 2. Give an example of an integral domain that is not a UFD. Justify your claim.
- 3. Prove that the field $\mathbb{Q}\left(\sqrt{2}\right)$ does not contain any cube root of 2.
- 4. Construct a field of 9 elements.
- 5. Describe the group of automorphisms of $\mathbb{Q}\left(\sqrt[4]{2}\right)$ leaving \mathbb{Q} fixed.
- 6. Find all extensions of the automorphism $\Psi_{\sqrt{2},-\sqrt{2}}$ of $\mathbb{Q}\left(\sqrt{2}\right)$ to an isomorphism mapping $\mathbb{Q}\left(\sqrt{2},\sqrt{3}\right)$ to a subfield of $\overline{\mathbb{Q}}$.

PART - B

Answer 4 questions without omitting any Unit. Each question carries 12 marks.

Unit - I

- 7. a) Prove that every PID is a UFD.
 - b) Prove that in a PID, every ideal is contained in a maximal ideal.
- 8. a) Prove that every Euclidean domain is a PID.
 - b) Verify whether or not the integral domain Z[x] is a (i) UFD (ii) PID.
- 9. a) Prove that an odd prime p is not an irreducible in $\mathbb{Z}[i]$ if $p \equiv 1 \pmod{4}$.
 - b) Find the irreducible polynomial of $\sqrt{1+\sqrt{1+\sqrt{11}}}$ over Q. Justify your claim.

Unit - II

- 10. a) Give an example of an algebraically closed field. Justify your claim.
 - b) What are the irreducible polynomials in F[x], if F is an algebraically closed field?
 - c) Prove the impossibility of squaring a circle.
- 11. a) Prove that for any prime p and for any positive integer n, there exists a finite field of pⁿ elements.
 - b) Prove the algebraic closure of Z_p is not a finite extension of Z_p; for any prime p.
- 12. a) State and prove the conjugation isomorphism theorem.
 - b) Prove that an automorphism of the field R carries positive numbers onto positive numbers.

Unit - III

- a) Prove that an algebraic extension E of F is a splitting field over F if and only
 if every automorphism of F leaving F fixed induces an automorphism of E
 leaving F fixed.
 - b) Compute (Q ³√2 : Q).
- 14. a) Let K be a finite extension of E and E be a finite extension of F. Prove that K is separable over F if and only if K is separable over E and E is separable over F.
 - b) Prove that every irreducible polynomial in F[x] has a factorization of the form a $\prod_{i=1}^n (x-\alpha_i)^{\gamma}$.
 - c) Is there a finite extension of Q, which is not separable? Why?
- 15. a) Let K be a finite normal extension of F and E be an extension of F such that F ≤ E ≤ K. Prove or disprove :
 - i) E is a normal extension of F.
 - ii) K is a normal extension of E.
 - b) Illustrate the main theorem of Galois theory for the normal extension $\mathbb{Q}(\sqrt{2},\sqrt{5})$ of \mathbb{Q} .