

K19P 0356

Reg. No. : .....

Name : .....

# II Semester M.Sc. Degree (Reg./Suppl./Imp.) Examination, April 2019 (2017 Admission Onwards) MATHEMATICS

MAT 2C 06: Advanced Abstract Algebra

Time: 3 Hours

Max. Marks: 80

#### PART - A

Answer any 4 questions. Each question carries 4 marks.

- 1. Distinguish between primes and irreducibles of an integral domain.
- 2. Find all the units in  $\mathbb{Z}\left[\sqrt{-5}\right]$ .
- 3. Find  $\left[\mathbb{Q}\left(\sqrt{2}, \sqrt[4]{2}\right):\mathbb{Q}\right]$ .
- 4. If  $\alpha$  and  $\beta$  are constructible real numbers, prove that  $\alpha\beta$  is also constructible.
- 5. Find two extensions E and K of  $\mathbb Q$  such that  $[E:\mathbb Q] > [K:\mathbb Q]$ , but  $|G(E/\mathbb Q)| < |G(K/\mathbb Q)|$ .
- 6. Give the lattice diagram of intermediate fields of  $\mathbb{Q}(\sqrt{2}, i)$  over  $\mathbb{Q}$ . (4x4=16)

#### PART - B

Answer 4 questions without omitting any Unit. Each question carries 16 marks.

### Unit - I

7. a) Prove that an ideal in a PID is maximal if and only if p is an irreducible.
b) Prove or disprove, if F is a field and x, y are indeterminates, then

i) F is a PID
ii) F[x, y] is a PID.

8. a) Prove that every Euclidean domain is a PID.
b) Prove that any two non zero elements of a PID have a gcd and that any gcd of a and b can be expressed in the form λa + μb for λ, μ∈ D.
c) Find a gcd of x³ - x² - 2x + 2 and x³ + x² - 2 in ℚ[x].

7. D. P.T.O.

## K19P 0356



| 115/ 5 (41)                                                                                                                                                                                                                                                                  |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 9. a) Let P be an odd prime in $\mathbb{Z}$ . Prove that $p = a^2 + b^2$ for some integers a and b if and only if $p \equiv 1 \pmod{4}$ .                                                                                                                                    | 14  |
| b) How would you construct a field of 4 elements?                                                                                                                                                                                                                            | mBM |
| Semester M.Sc. Degree (Reg./Supulmus.) Examination, April 2019                                                                                                                                                                                                               |     |
| 10. a) Prove that if E is a finite extension of F and K is a finite extension of E, then                                                                                                                                                                                     | 10  |
| <ul> <li>b) Let F ≤ E ≤ K, be fields such that E is a finite extension of F and K is an algebraic extension of E. Then prove or disprove :</li> </ul>                                                                                                                        |     |
| <ul><li>i) K is an algebraic extension of F</li><li>ii) K is a finite extension of F.</li></ul>                                                                                                                                                                              | 6   |
| 11. a) Prove that 'trisecting the angle is impossible'.                                                                                                                                                                                                                      | 6   |
| b) Prove that if F is a finite field of characteristic p, then the polynomial X. has p <sup>n</sup> distinct zeros in the algebraic closure of F.                                                                                                                            | 6   |
| c) Find the number of primitive 8 <sup>th</sup> roots of unity in GF(9).                                                                                                                                                                                                     | 4   |
| <ol> <li>a) Define Frobenius automorphism of a finite field. If F is a finite field of<br/>characteristic p, prove that the fixed field of its Frobenius automorphism is</li> </ol>                                                                                          | 6   |
| isomorphic to $\mathbb{Z}_p$ .  b) State and prove conjugation isomorphism theorem.                                                                                                                                                                                          | 10  |
|                                                                                                                                                                                                                                                                              |     |
| (BT=1.41) D ravo (LSV) to Unit - III                                                                                                                                                                                                                                         |     |
| 13. Let E be an algebraic extension of a field F. Let σ be an isomorphism of F onto a field F'. If F' denotes an algebraic closure of F', prove that σ can be extended to an isomorphism τ of E onto a subfield of F' such that τ (a) = σ (a) for all a∈ F.                  |     |
|                                                                                                                                                                                                                                                                              | 5   |
| <ul><li>14. a) Prove that every field of characteristic 0 is perfect.</li><li>b) Prove that if E is a finite extension of F, then {E : F} divides [E : F].</li></ul>                                                                                                         | 5   |
| b) Prove that if E is a limite extension of $\mathbb{Q}$ . c) Prove that the field $\mathbb{Q}(\sqrt[4]{2})$ is not a splitting field extension of $\mathbb{Q}$ .                                                                                                            | 6   |
| c) Prove that the field $Q(VZ)$ to the affinite extension of F of degree n. Prove                                                                                                                                                                                            | )   |
| 15. a) Let F be a finite field and let E be a finite extension of F of degree n. Prove that K is a normal extension of F, the group G(K/F) ≈ Z <sub>n</sub> and G(K/F) is                                                                                                    | 3   |
| where $\alpha$ ( $\alpha$ ) = $\alpha$ for $\alpha \in K$ and $\beta$ = $\beta$ .                                                                                                                                                                                            | 161 |
| b) Obtain the one-to-one correspondence between the intermediate fields of the extension $\mathbb{Z}_2 \leq F$ and the subgroups of $G(F/\mathbb{Z}_2)$ as in the main theorem if $F = \mathbb{Z}_2(\alpha)$ , where $\alpha$ is a root of $x^4 + x + 1$ in $\mathbb{Z}_2$ . | , 6 |
| .0.1.3                                                                                                                                                                                                                                                                       |     |