

K19P 0357

Reg. No. :

Name :

II Semester M.Sc. Degree (Reg./Suppl./Imp.) Examination, April 2019 (2017 Admission Onwards) MATHEMATICS

MAT 2C 07: Measure and Integration

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks.

- 1. Show that if $m^*(A) = 0$, then $m^*(A \cup B) = m^*(B)$ for any B.
- Prove that the set of irrationals in the interval [1, 4] is Lebesgue measurable and has a measure 3.
- 3. Show that $\int_{1}^{\infty} dx / x = \infty$.
- 4. If f is non negative measurable function, then prove that f = 0 a.e. if and only if $\int f dx = 0$.
- Let [X,S,μ] be a measure space and E₁, E₂ ∈ S. Show that μ (E₁ Δ E₂) = 0 implies μ (E₁) = μ (E₂).
- 6. Show that if μ (X) $< \infty$ and $0 , then <math>L^p(\mu) \subseteq L^q(\mu)$. (4×4=16)

PART - B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit -

- 7. a) Prove that the outer measure of an interval is its length.
 - b) Prove that outer measure is translation invariant.
 - c) For any set A and any $\epsilon > 0$, show that there is an open set 0 containing A and such that $m^*(0) \le m^*(A) + \epsilon$.

P.T.O.

- 8. a) Prove that there exists a non measurable set.
 - b) Let T be a measurable set of positive measure and let $T^* = [x y : x \in T, y \in T]$. Show that T* contains an interval $(-\alpha, \alpha)$ for some $\alpha > 0$.
- 9. a) Let f be a non negative measurable function. Then prove that there exists a sequence $\{\varphi_n\}$ of simple functions such that, for each x, $\varphi_n(x) \uparrow f(x)$.
 - b) Let f and g are non negative measurable functions. Then prove that $\int f dx + \int g dx = \int (f + g) dx.$

Unit - II

- 10. a) State and prove Lebesgue's dominated convergence theorem.
 - b) If f is Riemann integrable and bounded over the finite interval [a, b], then prove that f is integrable and $R \int_{a}^{b} f dx = \int_{a}^{b} f dx$.
- 11. a) Show that $f \in L$ (a + h, b + h) and $f_h(x) \equiv f(x + h)$, then prove that $f_h \in L(a, b)$ and $\int_a^{b+h} f dx = \int_a^b f dx$.
 - b) Let f be a bounded measurable function defined on the finite interval (a, b). Show that $\lim_{\beta\to\infty}\int_a^b f(x)\sin\beta x\,dx=0$.
 - c) Show that Lebesgue integrable function need not be Riemann integrable.
- 12. a) Let μ^* be an outer measure on $\mathcal{H}(\mathcal{R})$ and let S^* denote the class of μ^* measurable sets. Then prove that S* is a σ-ring and μ* restricted to S* is a complete measure.
 - b) Prove that μ is σ -finite measure on a ring R, then prove it has a unique extension to the σ -ring $S(\mathcal{R})$.

K19P 0357

Unit - III

- 13. a) Let $[X, S, \mu]$ be a measure space and $Y \in S$. Let S_Y consist of those sets of S that are contained in S. Define $\mu_{\nu}(E) = \mu(E)$ if $E \in S_{\nu}$. Then show that $[Y, S_Y, \mu_Y]$ is a measure space.
 - b) Show that L^p(μ) is a vector space.
- 14. a) State and prove Minkowski's inequality.
 - b) If ρ (f, g) = $||f g||_p$ then prove that ρ is a metric on $L^p(\mu)$.
 - c) Let $p \ge 1$ and let $||f_n f||_p \to 0$. Show that $||f_n||_p \to ||f||_p$.
- 15. a) Prove that if $\{f_n\}$ is a sequence in $L^{\infty}(\mu)$ such that $\|f_n f_m\|_{\infty} \to 0$ as n, $m \to \infty$, then there exists a function f and such that $\lim_{n \to \infty} f_n = f$ a.e., $f \in L^{\infty}(\mu)$ and $\|f_n - f\|_{\infty} \to 0$.
 - b) Let $[X, S, \mu]$ be a measure space and $E_n \in S$, n = 1, 2, ... Show that
 - i) μ (lim inf E_n) \leq lim inf μ (E_n).
 - ii) If $\mu(X) < \infty$ then $\limsup \mu(E_1) \le \mu$ ($\limsup E_2$).

 $(4 \times 16 = 64)$