Open the proof of the proof of

K19P 0358

Reg. No.	:	

Name :

II Semester M.Sc. Degree (Reg./Suppl./Imp.) Examination, April 2019
(2017 Admission Onwards)

MATHEMATICS

MAT2C08: Advanced Topology

normal vilated as X tarti evene eases fitobeunit a accomp

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks.

- Show by an example that a bounded metric space need not be totally bounded.
- Let A be a subset of a topological space (X, T). If A is compact prove that every open cover of A by members of TA has a finite subcover.
- Give an example of a T₀-space that is not aT₁ space.
- 4. Prove that every closed subset of a normal space is normal.
- 5. Show that there is a homeomorphism $h: \mathbb{R} \to (-1, 1)$.
- Let (X, τ) be a topological space and let f, g: X → I be continuous functions.
 Prove that f is homotopic of g. (4x4=16)

PART - B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks.

Jamon at II UNIT - If its years II ying bris II lamon

- a) Prove that a metric space having Bolzano-Weierstrass property is totally bounded.
 - b) Let (X, 7) be a T₁ space. Prove that X is countably compact if and only if it has the Bolzano-Weierstrass property.
 P.T.O.

K19P 0358

.

I TOLONIL BOUNDET HOLDE AN TOLONI MAN ANT ANT ANT

K19P 0358

- 8. a) Prove that every compact subset of a Hausdorff space is closed.
 - b) Prove that compactness is a topological property.
 - c) Prove that a topological space (X, T) is compact if and only if every family of closed subsets of X with the finite intersection property has a nonempty intersection.
- 9. a) When is a topological space (X, T) said to be locally compact at a point p in X? If (X, T) is a Hausdorff space prove that X is locally compact at p if and only if there is a neighborhood U of p such that U is compact.
 - b) Show that the continuous image of a locally compact space need not be locally compact.
 - c) Prove that local compactness is preserved under open continuous functions.

UNIT - II

- 10. a) Let (X, τ) be a topological space. Prove that (X, τ) is a T_1 -space if and only if for each $x \in X$, $\{x\}$ is closed.
 - b) Prove that a T_1 -space (X, τ) is regular if and only if for each member p of X and each neighborhood p of U, there is a neighborhood V of p such that $\overline{V} \subseteq U$
 - c) Prove that every subspace of a regular space is regular.
- 11. a) Let $\{(X_{\alpha}, \mathcal{T}_{\alpha}) : \alpha \in \Lambda\}$ be a family of topological spaces and let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. Prove that (X, \mathcal{T}) is regular if and only if $(X_{\alpha}, \mathcal{T}_{\alpha})$ is regular for each $\alpha \in \Lambda$.
 - b) Define a completely normal space. Prove that a T₁ space (X, τ) is completely normal if and only if every subspace of it is normal.
- a) Let (X, ≤) be a well ordered set, and let

 denote the order topology on X.

 Prove that (X,

) is a normal space.
 - b) Prove that every second countable regular space is normal.

UNIT - III

-3-

- a) State (no proof) Urysohn's lemma. Deduce that every normal space is completely regular.
 - b) Prove that a T₁-space (X, J) is normal if and only if whenever A is a closed subset of X and f : A → [-1, 1] is a continuous function, then there is a continuous function F : X → [-1 1] such that F|_A = f.
- a) State (no proof) Alexander subbase theorem. Use it to prove that product of compact spaces is compact.
 - b) For each $n \in \mathbb{N}$, let (X_n, d_n) be a metric space, let $X = \prod_{n \in \mathbb{N}} X_n$, and let \mathcal{I} be the product topology on X. Prove that (X, \mathcal{I}) is metrizable.
- 15. a) State and prove Urysohn's metrization theorem.
 - b) Let (X, τ) be a topological space, let $x_0 \in X$, and let $[\alpha] \in \Pi_1$ (X, x_0) . Prove that there is $[\overline{\alpha}] \in \Pi_1$ (X, x_0) such that $[\alpha] \circ [\overline{\alpha}] = [\overline{\alpha}] [\alpha] = [e]$, where [e] is the identity element of Π_1 (X, x_0) .