

K19P 0359

Reg.	No.	:	
------	-----	---	--

Name :

II Semester M.Sc. Degree (Reg./Suppl./Imp.) Examination, April 2019
(2017 Admission Onwards)

MATHEMATICS

MAT2 C09: Foundations of Complex Analysis

Time: 3 Hours

See Dies : ((s.))(s))(bigue diw n'e 2 a 1 piene must mai ...

Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks :

- Let G be a region and suppose that f: G → C is analytic and a∈G such that |f(a)| ≤ |f(z)| for all z in G. Show that either f(a) = 0 or f is constant.
- Let f be analytic in B(a; R) and suppose that f(a) = 0. Show that a is a zero of multiplicity m if and only if f^(m-1)(a) = ... = f(a) = 0 and f^(m)(a) ≠ 0.
- 3. Find the Laurent development of $f(z) = \frac{1}{(z-1)(z-2)}$ valid in the annulus (0; 1, 2).
- 4. Using residue theorem, show that $\int_{-\infty}^{\infty} \frac{dx}{1+x^2} = \pi.$
- 5. Define the set $C(G, \Omega)$ and show that it is non-empty.
- Show that a necessary condition for the convergence of an infinite product is that the nth term must go to 1. (4x4=16)

PART - B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks :

Unit - I

- 7. a) Define winding number and prove that it is an integer.
 - b) Let r be a closed rectifiable curve in C. Prove that :
 - i) n(-r, a) = -n(r, a) for every $a \notin \{r\}$,
 - ii) $n\{r, a\}$ is constant for a belonging to a component of $G = \mathbb{C} \{r\}$,
 - iii) n{r, a} = 0 for a belonging to the unbounded component of G.
- 8. a) Let r be a rectifiable curve and suppose ϕ is a function defined and continuous on $\{r\}$. For each $m \ge 1$, let $F_m(z) = \int_r \frac{\phi(w)}{(w-z)^m} dw$ for $z \notin \{r\}$. Prove that each F_m is analytic on $\mathbb{C} \{r\}$ and $F_m'(z) = m \, F^{m+1}(z)$.
 - b) State and prove the first version of Cauchy's integral formula.
- 9. a) If r_0 and r_1 are two closed rectifiable curves in G and $r_0 \sim r_1$, prove that $\int f = \int f$ for every function f analytic on G.
 - b) State and prove open mapping theorem.

Unit - II

- a) If f has an isolated singularity at a, then prove that the point z = a is a removable singularity if and only if lim(z-a) f(z) = 0.
 - b) State and prove Casaroti-Weierstrass theorem.
- 11. a) Use residue theorem to show that $\int\limits_0^\infty \frac{\log x}{1+x^2} \, dx = 0 \, .$
 - b) State and prove Rouche's theorem.

- a) State and prove Schwarz's lemma.
 - b) If |a| < 1, define $\varphi_a(z) = \frac{z-a}{1-\overline{a}z}$, prove that φ_a is a one-one map of $D = \{z : |z| < 1\}$ onto itself; the inverse of φ_a is φ_{-a} . Also prove that φ_a maps ∂D onto ∂D , $\varphi_a(a) = 0$, $\varphi_a'(0) = 1 |a|^2$ and $\varphi_a'(a) = (1 |a|^2)^{-1}$.

-3-

Unit - III

- 13. a) With usual notations, prove that C (G, Ω) is a complete metric space.
 - b) Prove that a set F ⊂ C (G, Ω) is normal if and only if for every compact set K ⊂ G and δ>0 there are functions f₁, ..., fₙ in F such that for f∈F there is at least one k, 1 ≤ k ≤ n with sup{d(f(z),fκ(z)) : z∈K} < δ.</p>
- 14. a) If {f_n} is a sequence in H(G) and f belongs to C(G, C) such that f_n → f, then prove that f is analytic and f_n^(k) → f^(k) for each k ≥ 1.
 - b) State and prove Reimann mapping theorem.
- 15. a) Let Re $z_n > 0$ for all $n \ge 1$. Prove that $\prod_{n=1}^{\infty} z_n$ converges to a non-zero number if and only if the series $\sum_{n=1}^{\infty} \log z$ converges.
 - b) Let Re $z_n > -1$; then prove that the series $\sum log(1 + z_n)$ converges absolutely if and only if the series $\sum z_n$ converges absolutely.
 - c) State and prove the Weierstrass factorization theorem. (4×16=64)