Let E be of the automater of extensions of a to an isomorphism of E and a sopficion of F is finite and is independent of o. If and P.

of F is finite and is independent of o. If and P.

of (V2) onto a subfield of Q.

of Prove that a finite extension of F is separable over F it and only if every in the field is separable over F.

of Prove that avery finite field is separable over F it and only if every in the field is separable.

of Prove that avery finite field is separable.

of the transport of F is separable.

of the first of F is the first of F is separable.

of the first of F is the first of F is separable.

Reg. No.:....

K18P 0134

Name:

Second Semester M.Sc. Degree (Supplementary/Improvement)
Examination, March 2018

(2014-2016 Admn.) MATHEMATICS

MAT 2C 06: Advanced Abstract Algebra

Time: 3 Hours Max. Marks: 60

PART - A

Answer any 4 questions. Each question carries 3 marks.

- 1. Prove that if f(x) is a primitive polynomial in $\mathbb{Z}[x]$ and if f(x) = g(x) h(x), for g(x), $h(x) \in \mathbb{Z}[x]$, then both g(x) and h(x) are also primitive.
- 2. Show that the element 3 is an irreducible in the integral domain $\mathbb{Z}\left[\sqrt{-5}\right] = \left\{a + i\sqrt{5} \ b : a, b \in \mathbb{Z}\right\}$
- 3. Give example of a real number which is not constructible. Justify your answer.
- 4. Let F be a field and F \leq E. If α , $\beta \in$ E are algebraic over F, prove that $\alpha + \beta$ is algebraic over F.
- Give examples for fields F and E such that F ≤ E and the degree [E : F] differs from the index {E : F}.
- Describe the group of the polynomial x⁴ − 1 over Q.

 $(4 \times 3 = 12)$

BANGOLA E PART - B Conclude Six of the Conclud

Answer any 4 questions without omitting any Unit. Each question carries 12 marks.

Ballo swinty (mail and 0) = (a) Unit - I

- 7. a) Define irreducible in an integral domain. Give an example of a non-constant polynomial in Z[x] which is an irreducible. (1+2)
 - b) Prove that if D is a UFD, then D[x] is also a UFD.

9

P.T.O.

Unit - III

1	3.	a)	State isomorphism extension theorem.	2
		b)	Let E be a finite extension of F and σ , an isomorphism of F on to a field F'. Prove that the number of extensions of σ to an isomorphism of E onto a subfield of \overline{F} ' is finite and is independent of σ , F' and \overline{F} '.	8
	6)	c)	Find all extension of the identity automorphism of Q to an isomorphism of Q $\left(\sqrt[4]{2}\right)$ onto a subfield of $\overline{\mathbf{Q}}$.	2
1	4.	a)	Prove that a finite extension of F is separable over F if and only if every α in E is separable over F.	4
		b)	Prove that every finite field is separable.	8
1	5. 1	a)	Let K be a finite normal extension of a field F with Galois group $G(K/F)$. Prove that for $F \le E \le K$, $[K:E] = G(K/E) $ and $[E:F] = (G(K/F):G(K/E))$, where $(G(K/F):G(K/E))$ is the index of the subgroup $G(K/E)$ of $G(K/F)$. Also prove that for $H \le G(K/F)$, $G(K/K_H) = H$, where K_H is the fixed field of H in K. (4+	-5)
		b)	For an extension F of \mathbb{Z}_3 such that $[F:\mathbb{Z}_3]=10$, what is the Galois group $G(F/\mathbb{Z}_3)$.	3

8. a) Verify whether or not the function γ defined on \mathbb{Z} by $\gamma(n) = n^2$ is a Euclidean norm for \mathbb{Z} .

- b) State and prove the Fermat's $p = a^2 + b^2$ theorem.
- 9. a) Find an extension field F of R such that
 - i) F is an algebraic extension of R.
 - ii) F is not an algebraic extension of IR.

Justify your answer in each.

(2+2)

3

9

b) Let F be a field and E = F(α), where α is algebraic over F. If deg $(\alpha,F)=n\geq 1, \text{ prove that every element } \beta \text{ in F}(\alpha) \text{ can be uniquely expressed}$ as $\beta=b_0+b_1 \alpha+...+b_{n-1} \alpha^{n-1}, b_i \in F.$

I Init - I

- a) Prove that every finite extension of a field is an algebraic extension.
 - b) Find a basis for $\mathbb{Q}\left(\sqrt{2},\sqrt{3},\sqrt{6}\right)$ over \mathbb{Q} .
 - c) Prove that an algebraically closed field has no proper algebraic extension. 4
- 11. a) Prove that if α and $\beta \neq 0$ are constructible reals, then $\alpha\beta$ and α/β are also constructible.
 - b) Prove or disprove :
 - i) Every finite extension of a finite field is simple.
 - ii) Every finite extension of a finite field is algebraic. (2+2)
- a) Let α be algebraic over F. Prove that every isomorphism, mapping F(α) onto a subfield of F and leaving F fixed, maps α onto a conjugate of α over F.
 3
 - b) Consider the field $\mathbb{Z}_2[x]/\langle x^2+x+1\rangle = \mathbb{Z}_2(\alpha) = \{0, 1, \alpha, 1+\alpha\}$; where α is a zero in $\overline{\mathbb{Z}}_2$ of x^2+x+1 . Describe completely the Frobenius automorphism σ_2 of this field. What is the fixed field of σ_2 ? (4+2)
 - c) Is the map $\sigma_2: \mathbb{Z}_3 \to \mathbb{Z}_3$ defined by $\sigma_2(\alpha) = \alpha^2$, an isomorphism? Why? 3