the State and grove Plannah margarid the Smith

4. Verify that $\int_{0}^{\infty} \frac{dx}{x^2 + 1} = \frac{\pi}{2}$

5. Show that a necessary condition for the convergence of the infinite product with all its terms non-zero, is that the nth terms tends to 1 as n tends to ∞.

6. Find the residue of the gamma function at each of its poles.

K18P 0137

Time: 3 Hours

Reg. No.:....

Second Semester M.Sc. Degree (Supplementary/Improvement) Examination, March 2018

(2014-2016 Admn.) **MATHEMATICS**

MAT2C09: Complex Analysis

Max. Marks: 60

PART - A

Answer any four questions from this Part. Each question carries 3 marks. (4x3=12)

- 1. Let G be a region and define $G^* = \{z : \overline{z} \in G\}$. If $f : G \to \mathbb{C}$ is analytic, prove that $f^*: G^* \to \mathbb{C}$ defined by $f^*(z) = \overline{f(\overline{z})}$, is also analytic.
- 2. Evaluate $\int \frac{e^z e^{-z}}{z^n} dz$ where n is a positive integer and $r(t) = e^{it}$, $0 \le t \le 2\pi$.
- 3. Let $f(z) = \frac{1}{(z-1)(z-2)}$. Obtain the Laurent expansion of f(z) in each of the annuli (i) ann (0; 1, 2) (ii) ann (0; 2, ∞).

PART - B

Answer any four questions from this part without omitting any unit. Each question carries 12 marks. (4x12=48)

UNIT-I

- a) Let G be either the whole plane C or some open disk. If u : G → R is a harmonic function, prove that u has a harmonic conjugate.
- b) Let $f: G \to \mathbb{C}$ be analytic and suppose that $\overline{B}(a; r) \subset G(r > 0)$. If $r(t) = a + re^{it}$, $0 \le t \le 2\pi$, prove that $f(z) = \frac{1}{2\pi i} \int_{r} \frac{f(w)}{w z} dw$ for |z a| < r.
- a) Let G be a connected open set and let f : G → C be an analytic function. Prove that f = 0 if and only if {z ∈ G : f(z) = 0} has a limit point in G.
 - b) State and prove Morera's theorem.
- 9. a) If r_0 and r_1 are two closed rectifiable curves in G and r_0 is homotopic to r_1 , then prove that $\int_0^f f = \int_0^f f$ for every function f analytic on G.
 - b) Let G be a region and suppose that f is a nonconstant analytic function on G. Prove that for any open set U in G, f(U) is open.

UNIT - II

- 10. a) State (without proof) the Laurent development. Use Laurent expansion to obtain characterizations for an isolated singularity to be (i) a removable singularity (ii) a pole of order m, (iii) an essential singularity.
 - b) Show that $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$.
- 11. a) State and prove the argument principle.
 - b) Suppose f and g are meromorphic in a neighbourhood \widetilde{B} (a, R) with no zeros and poles on the circle $r = \{z : |z a| = R\}$. If Z_f , Z_g (P_f , P_g) are the number of zeros (poles) of f and g inside r counted according to their multiplicities and if H(z) + g(z)|<|f(z)|+|g(z)| on r, prove that $Z_f P_f = Z_g P_g$. Also deduce the fundamental theorem of algebra.

- 12. a) State and prove the maximum modulus theorem (third version).
 - b) State (without proof) Schwarz's lemma. If $D=\{z:|z|<1\}$ and if $f:D\to D$ is a one to one analytic map of D onto itself with f(a)=0, then prove that there is a complex number C with |C|=1 such that $f=C\phi_a$ where $\phi_a(z)=\frac{z-a}{1-\overline{a}z}$, |a|<1.

-3-

UNIT - III

- 13. a) Define the set C (G, Ω). Show that it is never empty. Also show that it may contain only the constant functions.
 - b) Prove that a set $F \subset C$ (G, Ω) is normal if and only if its closure is compact.
 - c) If F⊂ C (G, Ω) is equicontinuous at each point of G, then prove that F is equicontinuous over each compact subset of G.
- 14. State and prove Riemann mapping theorem.
- 15. a) State (without proof) the Weierstrass factorization theorem. Derive the factorization $\sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 \frac{z^2}{n^2}\right)$.
 - b) Define the gamma function. Show that for $z \neq 0, -1, \ldots,$ $\Gamma(z) = \lim_{n \to \infty} \frac{n! \, n^z}{z(z+1), \ldots (z+n)} \text{ and } \Gamma(z+1) = z\Gamma(z).$