M. a) Letter, 1) by a reproductive space and x, x X. Prove that (15.5X x, 10) has an identity element.

23. Define a representative space. If 1, g : X -> Y are oppositive functions, no a pathwise connected appear If 1, g : X -> Y are oppositive functions. Then prove that it is homotopic to g.

15. m. Let (X, T) be a pathwise connected space and let x, x, x X. Prove that The X, x) is anomorphic to (11.5X x).

16. Let (X, T) and (Y, U) be repolacies spaces and let x, x X and y, x Y. When during any that ix x, a and iv y and if y, x and it y, x and it y, x and it y, x are often same nomorphy type. Then prove that (15.5X x).

16. Constant of the x are often same nomorphy type, then prove that (15.5X x).

16. Extramodition to (15.5X x).

K18P 0136

Second Semester M.Sc. Degree (Supplementary/Improvement)
Examination, March 2018

MATHEMATICS
(2014 – 2016 Admn.)
MAT2C08: Topology

Time: 3 Hours Max. Marks: 60

PART – A

Answer any four questions from this Part. Each question carries 3 marks. (4x3=12)

- 1. Prove that every subspace of a completely regular space is completely regular.
- 2. Prove that every second countable space is Lindelof.
- 3. For each $n \in \mathbb{N}$, let $B_n = \{2n-1, 2n\}$. Then $B = \{B_n : n \in \mathbb{N}\}$ is a base for a topology T on \mathbb{N} . Show that (\mathbb{N}, T) has the Bolzano-Weierstrass property, but it is not countably compact.
- Show that the one-point compactification of R is homeomorphic to the circle S¹.
- Define homotopy between two continuous functions f, g: X → Y, where X and Y are topological spaces and give an example.
- 6. Let (X, T) be a topological space and $x_0 \in X$. Prove that path homotopy is an equivalence relation on $\Omega(X, x_0)$.

PART - B

Answer any four questions from this Part without omitting any Unit. Each question carries 12 marks. (4×12=48

UNIT - 1 - [8 - 6] = [1][6 [6] 46 4 8 60 1]

7. a) Let (X, T) be a topological space. Prove that (X, T) is T_1 -space if and only if $A = \bigcap \{U \in T : A \subseteq U\}$ for any subset A of X.

- b) Let $\{(X_{\alpha}, T_{\alpha}) : \alpha \in \Lambda\}$ be a family of topological spaces and let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. Prove that (X, T) is regular if and only if (X_{α}, T_{α}) is regular for each $\alpha \in \Lambda$.
- a) Let (X, ≤) be a well-ordered set and let T denote the order topology on X.
 Prove that (X, T) is a normal space.
 - b) Prove that a T₁-space (X, T) is completely normal if and only if every subspace of X is normal.
- 9. a) Prove that every regular Lindelof space is normal.
 - b) Prove that a T₁-space (X, T) is normal if and only if whenever A is a closed subset of X and f : A → [-1, 1] is a continuous function then there is a continuous function F : X → [-1, 1] such that F|_A = f.

UNIT - II

- a) Prove that every closed subspace of a locally compact Hausdorff space is locally compact.
 - b) Let (X, T) be a compact space, let (Y, d) be a compact metric space and let F ⊆ C (X, Y). Prove that F is equicontinuous if and only if F is totally bounded with respect to sup metric.
- a) Define one-point compactification. Prove that the one-point compactifications
 of two homeomorphic topological spaces are homeomorphic.
 - b) State (without proof) Alexander subbase theorem. Use it prove that the product of compact spaces is compact.
- 12. State and prove Urysohn's metrization theorem.

UNIT - III

- 13. Let (X, T) be a topological space and $x_0 \in X$. Let $\prod_1(X, x_0)$ denote the set of all path-homotopy equivalence classes on $\Omega(X, x_0)$ and define an operation o on $\prod_1(X, x_0)$ by $[\alpha]$ o $[\beta] = [\alpha * \beta]$.
 - a) Prove that the operation o is well defined.
 - b) Prove that the operation o is associative.

- 14. a) Let (X, T) be a topological space and $x_0 \in X$. Prove that $(\prod_1(X, x_0), 0)$ has an identity element.
 - b) Define a contractible space. Let (X, T) be a contractible space and (Y, U) be a pathwise connected space. If f, g : X → Y are continuous functions, then prove that f is homotopic to g.
- 15. a) Let (X, T) be a pathwise connected space and let $x_0, x_1 \in X$. Prove that $\prod_1(X, x_0)$ is isomorphic to $\prod_1(X, x_1)$.
 - b) Let (X, T) and (Y, U) be topological spaces and let $x_0 \in X$ and $y_0 \in Y$. When do you say that (X, x_0) and (Y, y_0) are of the same homotopy type? If (X, x_0) and (Y, y_0) are of the same homotopy type, then prove that $\Pi_1(X, x_0)$ is isomorphic to $\Pi_1(Y, y_0)$.