K18P 0231

Reg. No.:....

Name :

Second Semester M.Sc. Degree (Regular) Examination, March 2018 MATHEMATICS (2017 Admn.) MAT 2 C09 : Foundations of Complex Analysis

Time: 3 Hours

13. a). Suppose P.C.O.G. (I) is equipoptingous at each point of G. Prove that F

Max. Marks: 80

paperni na al li vere e PART - Audmun probeto entre di la di

Answer any four questions from this part. Each question carries 4 marks.

- 1. Evaluate $\int_{r}^{\infty} \frac{z^2 + 1}{z(z^2 + 4)} dz$ where $r(t) = re^{it}$, $0 \le t \le 2\pi$, for all possible values of r with 0 < r < 2.
- Show that the relation homotopy is an equivalence relation on the set of all closed rectifiable curves in a region.
- 3. Define:
 - i) isolated singularity
 - ii) removable singularity.

Illustrate with examples.

4. Does there exist an analytic function $f: D \to D$ with $f\left(\frac{1}{2}\right) = \frac{3}{4}$ and

$$f'\left(\frac{1}{2}\right) = \frac{2}{3}$$
 (where D = {z : |z| < 1}) ? Why?

5. Define the set C (G, Ω). Can it be empty? Why?

6. Show that $\prod_{n=2}^{\infty} \left(1 - \frac{1}{n^2}\right) = \frac{1}{2}$.

 $(4 \times 4 = 16)$

P.T.O.

PART - B

Answer any four questions from this part without omitting any unit. Each question carries 16 marks.

Unit - I

- 7. a) Let G be a connected open set and let $f: G \to \mathbb{C}$ be an analytic function. Prove that $f \equiv 0$ if and only if the set $\{z \in G : f(z) = 0\}$ has a limit point in G.
 - b) State and prove the maximum modulus theorem.
- 8. a) Define the winding number and prove that it is an integer.
 - b) State and prove the first version of Cauchy's integral formula.
- a) Let G be a region and let f : G → C be a continuous function such that $\int f = 0$ for every path T in G. Prove that f is analytic in G.
 - b) Let G be an open set and let $f:G\to \mathbb{C}$ be a differentiable function. Prove that f is analytic on G.

Unit - II

- 10. a) State the theorem (no proof) on Laurent series development. Use the Laurent expansion to classify the isolated singularity at a point z = a of a function f analytic in $\{z: 0 < |z-a| < R\}$. Justify your classification.
 - b) State and prove Casaroti-Weierstrass theorem.
- 11. a) State and prove residue theorem.
 - b) Use residue theorem to show that $\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$.
- 12. a) State and prove Schwarz's lemma.

(distante)

b) If |a| < 1, prove that the map φ_a defined by $\varphi_a(z) = \frac{z-a}{1-\overline{a}z}$ is a one-one map of D = {z : | z | < 1} onto itself; the inverse of ϕ_a is ϕ_{-a} . Also prove that ϕ_a maps ∂D onto ∂D , $\phi_a(a) = 0$, $\phi_a'(0) = 1 - |a|^2$ and $\phi_a'(a) = (1 - |a|^2)^{-1}$.

K18P 0231

Unit - III

- 13. a) Suppose F C C (G, Ω) is equicontinuous at each point of G. Prove that F is equicontinuous over each compact subset of G.
 - b) State and prove Arzela-Ascoli theorem.
- 14. a) Define the set H(G). If {f,} is a sequence in H(G) and f belongs to $C(G, \mathbb{C})$ such that $f_n \to f$ then prove that f is analytic and $f_n^{(k)} \to f^{(k)}$ for each integer k ≥ 1.
 - b) Prove that a family F in H(G) is normal if and only if F is locally bounded.
- 15. a) State (no proof) the Weierstrass factorization theorem.
 - b) Let G be a region and let {a} be a sequence of distinct point in G with no limit point in G; and let {m,} be a sequence of integers. Then prove that there is an analytic function f defined on G whose only zeros are at the points a, and further that a, is a zero of multiplicity m,. $(4 \times 16 = 64)$