K16P 0422

Reg.	No.	:	
Name	9 :		

Second Semester M.Sc. Degree (Regular/Supplementary/Improvement) Examination, March 2016 (2014 Admn. Onwards) MATHEMATICS MAT 2C 07 – Measure and Integration

Time: 3 Hours

Max. Marks: 60

PART-A

Answer four questions from this Part. Each question carries 3 marks.

- 1. Show that the outer measure is translation invariant.
- 2. Show that the characteristic function χ_A of the set A is measurable if and only if A is measurable.
- 3. If f is an integrable function such that f = 0 a.e, then show that $\int f dx = 0$.
- Show that the Lebesgue measure m defined on M, the class of measurable subsets of IR, is σ-finite and complete.
- 5. Let $\{f_n\}$ be a sequence of non-negative measurable functions, let $\lim f_n = f$ and $f_n \leq f$ for each n. Show that $\int f \, d\mu = \lim \int f_n \, d\mu$.
- 6. Let $f, g \in L^1(\mu)$; $p, q \in (0, 1)$ and p + q = 1. Show that $|f|^p |g|^q \in L^1(\mu)$.

K16P 0422

-2-PART – B

Answer any four questions from this Part without omitting any Unit. Each question carries 12 marks.

1-TINU /Supplementary/Improvement)

- 7. a) Prove that the class M of all Lebesgue measurable sets is a σ-algebra.
 - b) Prove that every interval is measurable.
- 8. a) Show that there exists a non-measurable set.
 - b) If f and g are real valued measurable functions on a measurable set E, prove that f + g and fg are measurable.
- 9. a) Let $\{f_n, n = 1, 2, ...\}$ be a sequence of non-negative measurable functions. Prove that $\liminf \{f_n dx \ge \{\liminf f_n dx \}\}$
 - b) If f and g are non-negative measurable functions, prove that $\int (f+g) dx = \int f dx + \int g dx.$

UNIT-II

- 10. a) State and prove the Lebesgue's dominated convergence theorem.
 - State and prove a 'continuous parameter' version of dominated convergence theorem.
- 11. a) If f is Riemann integrable and bounded over the finite interval [a, b], prove that f is integrable and $R \int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$.
 - b) Let f be a bounded measurable function defined on the finite interval (a, b). Show that $\lim_{\beta\to\infty}\int_a^\beta f(x)\sin\beta x\ dx=0$.
- 12. a) Let $\{A_i\}$ be a sequence in a ring R. Prove that there is a sequence $\{B_i\}$ of disjoint sets of R such that $B_i \subseteq A_i$ for each i and $\bigcup_{i=1}^N A_i = \bigcup_{i=1}^N B_i$ for each N so that $\bigcup_{i=1}^\infty A_i = \bigcup_{i=1}^\infty B_i$.
 - b) With usual notations prove that the outer measure μ^* on H(R) defined by μ on R and the corresponding outer measure μ on S(R) and μ on S* are the same.

.

K16P 0422

UNIT - III

- 13. a) Let $\{a_n\}$ be a sequence of non-negative numbers and for $A \subseteq \mathbb{N}$, let $\mu(A) = \sum_{n \in A} a_n$. Show that $[[\mathbb{N}, P(\mathbb{N}), \mu]]$ is a measure space.
 - b) Let $[[X, S, \mu]]$ be a measure space and f a non-negative measurable function. Then prove that $\phi(E) = \int_E f \, d\mu$ is a measure on the measurable space [[X, S]]. Further if $\int_E f \, d\mu < \infty$ then prove that for all $\epsilon > 0$, there exists $\delta > 0$ such that if $A \in S$ and $\mu(A) < \delta$, then $\phi(A) < \epsilon$.
- 14. a) Define the space $L^p(\mu)$. If $f, g \in L^p(\mu)$ prove that $af + bg \in L^p(\mu)$ where a and b are constants. Also if $\mu(X) < \infty$ and $0 , then show that <math>L^q(\mu) \subseteq L^p(\mu)$.
 - b) State and prove Minkowski's inequality.
- 15. For $1 \le p \le \infty$, prove that $L^p(\mu)$ is a complete metric space.