K16P 0424

Reg. No.:

Second Semester M.Sc. Degree (Regular/Supplementary/Improvement) Examination, March 2016

MATHEMATICS

(2014 Admn. Onwards)

MAT 2C09 : Complex Analysis

Max. Marks: 60 Time: 3 Hours

PART-A

Answer four questions from this Part. Each question carries 3 marks.

- 1. Prove that two harmonic conjugates of a harmonic function defined in a region differ by a constant.
- 2. Use partial fractions to evaluate $\int_{r}^{r} \frac{dz}{z^2 + 1}$, where $r(t) = 2e^{it}$, $0 \le t \le 2\pi$.
- 3. Show that $\int_0^\infty \frac{dx}{x^2 + 1} = \frac{\pi}{2}$.
- 4. Let D = {z : |z| < 1}. Does there exist a function f : D \rightarrow D with f $\left(\frac{1}{2}\right) = \frac{3}{4}$ and $f'\left(\frac{1}{2}\right) = \frac{3}{4}$? Justify your answer.
- 5. Find the value of $\prod_{n=2}^{\infty} \left(1 \frac{1}{n^2}\right)$.
- 6. Derive the functional equation satisfied by the gamma function.

PART-B

-2-

Answer any four questions from each Part without omitting any Unit. Each question carries 12 marks.

Unit -

- 7. a) Let G be either the whole plane $\mathbb C$ or come open disk. If $f: G \to \mathbb R$ is a harmonic function, prove that u has a harmonic conjugate.
 - b) Let f be analytic in B (a; R). Prove that $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ for |z-a| < R, where $a_n = \frac{1}{n!} f^{(n)}(a)$ and this series has radius of convergence $\ge R$.
- 8. a) State and prove maximum modulus theorem.
 - b) Define the index n (r, a) of a closed curve with respect to the point a. If r is a closed rectifiable curve in C, then prove that n (r, a) is constant for a belonging to the component of G = C − {r}. Also prove that n (r, a) = 0 for a belonging to the unbounded component of G.
- 9. a) State and prove Morera's theorem.
 - b) If G is simply connected and f: G → C is analytic in G, then prove that f has a primitive in G.

Unit - II

- 10. a) If f has an isolated singularity then, prove that the point z = a is a removable singularity if and only if $\lim_{z \to a} (z a) f(z) = 0$.
 - b) State and prove Casarotic-Weierstrass theorem.
- 11. a) State and prove the residue theorem.
 - b) Show that $\int_0^\infty \frac{\log x}{1+x^2} dx = 0.$

-3- K16P 0424

- 12. a) State and prove Rouche's theorem.
 - b) State and prove the second version of the maximum modulus theorem. Is it possible to drop the assumption of boundedness of G? Justify.

Unit - III

- 13. a) With usual notations prove that $C(G, \Omega)$ is a complete metric space.
 - b) Define equicontinuity at a point and over a set. Suppose $F \subset C(G, \Omega)$ is equicontinuous at each point of G. Then prove that F is equicontinuous over each compact subset of G.
- 14. a) State and prove Montel's theorem.
 - b) State and prove Weierstrass factorization theorem.
- 15. a) Define the gamma function and derive the Gauss's formula

$$\Gamma(z) = \lim_{n \to \infty} \frac{n! \ n^z}{z(z+1)...(z+n)}, \quad z \neq 0, -1,$$

b) Prove that $\left(\frac{\Gamma'(z)}{\Gamma(z)}\right)' = \frac{1}{z^2} + \sum_{n=1}^{\infty} \frac{1}{(n+z)^2}$.