with the property that if (Y k) a any compositionard X. Such was each continuous lightful (Y x) a Prove that X is homeomorphic to (g(X)).

E. a) Let (X x) the a compact space, let (y, d) be a compact metric space, and let ...

F. c. c(X, Y). Then prove that F is equicontinuous if and only if F is totally bounded with respect to I. Where I is the supremum metric of C(X, Y).

b) Define a compactitication of a locally compact Hausdorff space (X, x).

Unit - III

Let (X x) be a topological space let x₀ ∈ X and let [x], [x], [x] ∈ x₁(X, x₂).

Then prove that ([x] ∈ [x]) = [x] = [x] = ([x] ∈ [x]).

every special space is $x_n \in X$ and let $[\alpha] \in \pi_n(X, x_n)$ there prove

that there exists $\{a\} = \pi_1(X, x_n)$ such that $\{\alpha\} \in [\alpha] \cap [\alpha] = [\alpha]$, where α

is: (X, X) ... If y.) Do maps such that he'V vel x... Then prove that

K16P 0423

Reg. N	Vo. :	
Name	:	

II Semester M.Sc. Degree (Regular/Supplementary/Improvement)
Examination, March 2016
(2014 Admn. Onwards)
MATHEMATICS
MAT 2C08: Topology

Time: 3 Hours Max. Marks: 60

Instructions: Answer four questions from Part – A. Each question carries three marks. Answer four questions from Part – B without omitting any Unit. Each question carries 12 marks.

PART-A

- 1. Let $x = \{(x, y) \in IR \times IR : y = 0 \text{ or } y = 1\}$ and let z be the subspace topology on x. For each $a(\neq 0) \in IR$, let $D_a = \{(a, 0), (a, 1)\}$ and let $\mathscr{D} = \{Da = a \in IR\} \cup \{(0, 0)\} \cup \{0, 1\}$ If μ is the quotient topology on \mathscr{D} induced by the natural map $p: X \to \mathscr{D}$ then prove that p is open.
- Let (X, τ) be a T₁ space and let (Y, μ) be a topological space and let f be a closed map from X onto Y. Prove that (Y, μ) is a T₁- space.
- 3. Let (X, τ) be a topological space and let (Y, μ) be its one point compactification. Prove that (Y, μ) is Hausdorff if and only if (X, μ) is Hausdorff and locally compact.
- Show by an example that there exists a topological space X such that at least one open of it is finitely inadequate.
- 5. When do we say that two functions f and g from the topological space X into the topological Y are homotopic. Illustrate it with an example.
- 6. Let X be a convex subset of IR. Prove that upto isomorphism the fundamental group of X is independent of the base point.

PART-B

-2-

Unit - I

- 7. a) Let (X, τ) be a topological space with a dense subset D and a closed relatively discrete subset c such that p(D) < c. Then prove that (X, τ) is not normal.
 - b) Define Moore plane and deduce the from (a) that the Moore plane is not normal.
- a) Let (X ≤) be a well ordered set, and τ the order topology on X. Prove that (X, τ) is a normal space.
 - b) Prove that the real line IR with lower limit topology is Lindelöf.
- a) Let (X,τ) be a topological space. Prove that the following statements are equivalent.
 - i) (X, τ) is a τ_1 space.
 - ii) For each $x \in X$, $\{x\}$ is closed.
 - iii) If A is any subset of X then $A = \bigcap \{ \cup \in \tau : A \le \cup \}$.
 - b) Prove that every regular Lindeto space is normal.

Unit - II

- 10. a) Let (Ω, \leq) be an uncountable well-ordered set with a maximal element w, having the properly that if $x \in \Omega$ and $x \neq w_1$ then $\{y \in \Omega : y \leq x\}$ is countable. Let τ be the order topology on Ω , and let $\Omega_0 = \Omega \{w_1\}$. Then prove that $\left(\Omega_0, \tau_{\Omega_0}\right)$ is countably compact but not compact.
 - b) Define a k-space and give an example of it.
 - c) Prove that the quotient space of a locally compact space is a k-space.
- 11. a) Let (X, τ) be a completely regular space, let (Y, μ) be a compact Hausdorff space and let $h: X \to Y$ be a continuous function. Then prove that there is a continuous function $H: \mathfrak{G}(X) \to Y$ such that H = h.

- b) Let (X,τ) be a completely regular space, let (k, h) be a compactification of X with the properly that if (Y, k) is any compactification of X. Such that each continuous function f: X → Y can be extended to a continuous in F: K → Y where F₀h = &. Prove that K is homeomorphic to ⊗(X).
- 12. a) Let (X,τ) be a compact space, let (y, d) be a compact metric space, and let F c c(X, Y). Then prove that F is equicontinuous if and only if F is totally bounded with respect to I. Where I is the supremum metric of C(X, Y).
 - b) Define a compactification of a locally compact Hausdorff space (X, τ) .

Unit - III

- 13. a) Let (X,τ) be a topological space, let $x_0 \in X$ and let $[\alpha]$, $[\beta]$, $[\gamma] \in \pi_1(X,x_0)$. Then prove that $([\alpha] \circ [\beta]) \circ [\gamma] = [\alpha] \circ ([\beta] \circ [\gamma])$.
 - b) Let (X, τ) and (Y, μ) be topological spaces, let $x_0 \in X$ and $y_0 \in Y$, and let $h = (X, x_0) \to (Y, y_0)$ be a map. Then prove that h induces a homeomorphism $h_* = \pi_1(X, x_0) \to \pi_1(Y, y_0)$.
- 14. a) Let (X, τ) be a topological space, let $x_0 \in X$ and let $[\alpha] \in \pi_1(X, x_0)$ then prove that there exists $[\overline{\alpha}] \in \pi_1(X, x_0)$ such that $[\alpha] \circ [\overline{\alpha}] = [\overline{\alpha}] \circ [\alpha] = [e]$, where $e : I \to X$ be the path defined by $e(x) = x_0, x \in I$.
 - b) Let (X, τ) and (Y, μ) be topological spaces, let $x_0 \in X$ and $y_0 \in Y$ and let $h, k : (X, x_0) \rightarrow (Y, y_0)$ be maps such that $h \sim V$ vel x_0 . Then prove that $h_* = k_*$.
- 15. a) Let (X,τ) be a topological space, let $x_0 \in X$ and let $e:I \to X$ be the path defined by $e(x) = x_0$ for each $x \in I$ then prove that $[\alpha] \circ [e] = [e] \circ [\alpha] = [\alpha], \forall [\alpha] \in \pi_1(X,x_0)$.
 - b) Let (X, τ) be a path connected space and let $x_0, x_1 \in X$ then prove that $\pi_1(X, x_0)$ is isomorphic to $\pi_1(X, x_1)$.