Show that the characteristic functions corresponding to distinct characteristic numbers of the equation $y(x) = \lambda \int K(x,\xi) y(\xi) \, d\xi$ are orthogonal over the interval (0,1) where $K(x,\xi)$ is symmetric.

b) Show that the characteristic values of λ for the equation- $y(x) = \lambda \int_{0}^{\infty} \sin(x+\xi) y(\xi) \, d\xi$ are $\lambda_1 = \lambda_2 = \lambda_3 \int_{0}^{\infty} \sin(x+\xi) y(\xi) \, d\xi$ and $\lambda_2 = \lambda_3 \int_{0}^{\infty} \sin(x+\xi) y(\xi) \, d\xi$ of orderedsite functions of the form $y_1(x) = \sin x + \cos x$ and $y_2(x) = \sin x - \cos x$ and contacteristic functions of the form $y_1(x) = \sin x + \cos x$ and $y_2(x) = \sin x - \cos x$ depending the method of successive approximations of solving a Fredholm equation of the second tend, $y(x) = F(x) + \lambda \int_{0}^{\infty} K(x,\xi) y(\xi) \, d\xi$.

Reg. No. :

K16P 0425

Name:	
Second Semester M.Sc.	Degree (Regular/Supplementary/Improvement

(2014 Admn. Onwards)
MATHEMATICS

MAT 2C10: Partial Differential Equations and Integral Equations

Time: 3 Hours Max. Marks: 60

PART-A

Answer four questions from this part. Each question carries 3 marks.

- 1. Eliminate the arbitrary function F from the equation $z = xy + F(x^2 + y^2)$ and find the corresponding partial differential equation.
- 2. Show that the equations f = xp yq x = 0, $g = x^2p + q xz = 0$ are compatible.
- 3. Classify the equation $u_{xx} + x^2 u_{yy} = 0$, for all x.
- 4. State (with necessary assumptions) the heat conduction problem of an infinite rod.
- 5. If y''(x) = F(x) and y satisfies the initial conditions $y(0) = y_0$ and $y'(0) = y_0'$, show that $y(x) = \int_0^x (x \xi) F(\xi) d\xi + y_0' x + y_0$.
- 6. Show that the characteristic numbers of a Fredholm equation with a real symmetric Kernel are all real. (4×3=12)

PART-B

Answer any four questions from this part without omitting any Unit. Each question carries 12 marks.

UNIT-I

- 7. a) Prove that a necessary and sufficient condition that the Pfaffian differential equation $\vec{X} \cdot \vec{dr} = P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz = 0$ be integrable is that $\vec{X} \cdot \vec{curl} \cdot \vec{X} = 0$.
 - b) Verify that the equation yzdx + 2xzdy 3xydz = 0 is integrable and find the corresponding integral.

P.T.O.

- 8. a) Use Charpit's method to find the complete integral of $p^2x + q^2y = z$.
 - b) Solve $p = (z + qy)^2$ by Jacobi's method.
- 9. a) Find the complete integral of $p^2x + qy z = 0$ and derive the equation of the integral surface containing the line y = 1, x + z = 0.
 - b) Solve the Cauchy problem for $2z_x + yz_y = z$ for the initial data curve $C: x_0 = s, y_0 = s^2, z_0 = s, 1 \le s \le 2$.

UNIT-II

- 10. a) Reduce the equation $(n-1)^2 u_{xx} y^{2n} u_{yy} = n y^{2n-1} u_y$, where n is a positive integer to a canonical form and hence solve it.
 - b) Derive d' Alembert's solution which describes the vibrations of an infinite string.
- 11. a) Prove that for the equation $Lu = u_{xy} + \frac{1}{4}u = 0$, the Riemann function is $v(x, y; \alpha, \beta) = J_0(\sqrt{(x-\alpha)(y-\beta)})$ where J_0 is the Bessel's function of the first kind of order zero.
 - b) Prove that the solution of the following problem if it exists is unique

$$u_{tt} - c^2 u_{xx} = F(x, t), 0 < x < 1, t > 0$$

 $u(x, 0) = f(x), 0 \le x \le 1$
 $u_t(x, 0) = g(x), 0 \le x \le 1$

- $u(0, t) = u(1, t) = 0, t \ge 0.$
- 12. a) State Dirichlet problem for the upper half plane and solve it.
 - b) Solve:

$$u_t = k u_{xx}, 0 < x < l, t > 0$$

 $u(0, t) = u(l, t) = 0, t > 0$
 $u(x, 0) = f(x), 0 \le x \le l$

UNIT - III

-3-

- 13. Transform the boundary value problem $\frac{d^2y}{dx^2} + \lambda y = 0$, y(0) = 0, y(1) = 0 to a Fredholm equation of the second kind. Also recover the boundary value problem from the integral equation you obtain.
- 14. a) Show that the characteristic functions corresponding to distinct characteristic numbers of the equation $y(x) = \lambda \int_0^1 K(x, \xi) y(\xi) d\xi$ are orthogonal over the interval (0, 1) where $K(x, \xi)$ is symmetric.
 - b) Show that the characteristic values of χ for the equation $y(x) = \lambda \int_0^{2\pi} \sin(x+\xi) \ y(\xi) \ d\xi \ \text{are} \ \lambda_1 = \frac{1}{\pi} \ \text{and} \ \lambda_2 = -\frac{1}{\pi} \ \text{with corresponding}$ characteristic functions of the form $y_1(x) = \sin x + \cos x$ and $y_2(x) = \sin x \cos x$.
- 15. a) Describe the method of successive approximations of solving a Fredholm equation of the second kind, $y(x) = F(x) + \lambda \int_a^b K(x, \xi) y(\xi) d\xi$.
 - b) Apply the method of successive approximations to solve the equation

$$y(x) = 1 + \int_{0}^{1} (1 - 3x\xi) y(\xi) d\xi$$
 (4×12=48)