K16P 0467

Reg.	No.	:	
Name	e :		

Second Semester M.Sc. Degree (Regular/Supplementary/Improvement)

Examination, March 2016

(2013 and Earlier Admn.)

MATHEMATICS

Paper - VII : Real Analysis - II

Time: 3 Hours

Max. Marks: 60

Instructions: 1) Notations are as in prescribed textbook.

- Answer any four questions from Part A. Each question carries 3 marks.
- Answer any four questions from Part B without omitting any Unit. Each question carries 12 marks.

PART-A

- 1. Show that the Lebesgue outer measure of a countable subset of R is zero.
- Let f be a nonnegative measurable function with f = 0. Show that f = 0 a.e.
- 3. Let f(0) = 0 and $f(x) = x^2 \sin(1/x^2)$ for $x \neq 0$. Is it a function of bounded variation in [-1, 1]? Justify.
- Let C [0, 1] be the space of all continuous functions on [0, 1]. For f∈C[0, 1], define || f || = max | f(x) |. Show that C [0, 1] is a Banach space under the norm ||.||.
- 5. Give an example to show that the Hahn decomposition need not be unique.
- 6. Let E be a set for which $\mu \times v(E) = 0$. Then for almost all x, show that $v(E_x) = 0$. (4x3=12)

PART-B

Unit-1

- a) Define Lebesgue outer measure. Show that the outer measure of an interval is its length.
 - b) Deduce that [0, 1] is not countable.
- a) Define a measurable function. Show that sum and product of two measurable functions are measurable.
 - b) Give an example of a measurable and a non-measurable function.

K16P 0467

- 9. a) State and prove bounded convergence theorem.
 - b) State and prove Fatou's lemma.
 - c) .Show that we may have strict inequality in Fatou's lemma.

Unit - 2

- 10. Let f be an increasing real valued function on the interval [a, b]. Show that f is differentiable a.e., that the derivative f' is measurable and $\int_a^b f'(x) dx \le f(b) f(a)$.
- 11. a) State and prove Hölder inequality. When does the equality hold?
 - b) Show that even if $0 , we have <math>f + g \in L^p$ for $f, g \in L^p$.
 - 12. State and prove Riesz Representation Theorem.

Unit-3

13. a) If \mathcal{B} is a σ -algebra and μ is a measure, show that $\mu\left(\bigcap_{n=0}^{\infty}E_{n}\right)=\lim_{n\to\infty}\mu(E_{n})$ for

 $E_i \in \mathcal{B}$, $\mu(E_1) < \infty$ and $E_i \supset E_{i+1}$.

b) If {A_n} is a collection of measurable sets, show that

$$\mu\!\!\left(\bigcup_{k=1}^{\infty}\!A_k\right)\!\!=\!\lim_{n\to\infty}\mu\!\left(\bigcup_{k=1}^{n}\!A_k\right)\!\!, \text{ where }\mu\text{ is a measure}.$$

- 14. a) Define a positive set w.r.t. a signed measure. If E is measurable set such that $0 < vE < \infty$, show that there is a positive set A contained in E with vA > 0.
 - b) State and prove Hahn decomposition theorem.
- 15. a) Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, v) be two complete measure spaces and let \mathcal{R} be the collection of all measurable rectangles. Assume that E is a set in $\mathcal{R}_{\sigma\delta}$ with $\mu \times v(E) < \infty$. Show that the function g defined by $g(x) = vE_x$ is a measurable function of x and $\int g \ d\mu = \mu \times v(E)$, where E_x is the x cross section.
 - b) Establish the same conclusion when E is a measurable subset of X x Y.
 (4×12=48)