M 27245

Reg. No.:

Name :

II Semester M.A./M.Sc./M.Com. Degree (Reg./Sup./Imp.)

Examination, March 2015

(2014 Admn. Onwards)

MATHEMATICS

MAT2C08 : Topology

Time: 3 Hours

Max. Marks: 60

Instructions: Answer four questions from Part A. Each question carries 3 marks.

Answer four questions from Part B without omitting any Units. Each question carries 12 marks.

PART-A

- Give an example of a topological space, which is regular but not completely regular.
- Let X = {1, 2, 3, 4} determine whether each of the following topological spaces is normal.
 - i) (X, τ) , where $\tau = \{\phi, \{1, 2\}, \{3, 4\}, X\}$
 - ii) (X, τ) , where $\tau = \{\phi, \{1\}, \{1, 2\}, \{1, 2, 3\}, X\}$.
- 3. Let X be a set, let $\{A_\alpha : \alpha \in \wedge\}$ be a collection of subsets of X, let τ be the weak topology as X induced by A, and let (Y, U) be a topological space. Prove that a function $f: X \to Y$ is continuous if and only if for each $\alpha \in \wedge$, $f/_\alpha = A_\alpha \to Y$ is continuous.
- Let (X, τ) be a topological space and let (Y, u) be its one-point compactification.
 Prove that X is a dense subset of Y if and only if X is not compact.

M 27245

5. When will a topological space X be contractible? Illustrate it with an example.

-2-

6. Define deformation retract of a topological space X and prove that the unit circle S' of $IR \times IR$ is the deformation retract of the closed annulus $X = \{(x, y) \in IR \times IR : 1 \le x^2 + y^2 \le 4\}$.

PART-B UNIT-I

- 7. i) Let A = {η_n : n ∈ N} and let 𝔾 = {B ∈ 𝒪 (IR) = B is an open interval that does not contain 0 or there is a positive number x such that B = (-x, x) 4}. Then prove that (a) 𝔾 is a basis for a topology τ on IR the space (IR, τ) is a Hausdorff space.
 - ii) Characterise regular spaces.
- i) Define complete regularity and prove that every metric space is completely regular.
 - ii) Define Moore plane and prove that the Moore plane is not normal.
- 9. i) Let (X, τ) be a topological space and let (Y, u) be a Hausdorff space and let f and g: X → Y be continuous functions. If f and g agree on a dense subset of X then prove that f = g.
 - ii) Prove that Hausdorff space (X, τ) is locally compact of and only if for each $p \in X$ and each neighborhood V of p there is a neighborhood U of p such that \overline{U} is compact and $\overline{U} \subset V$.

UNIT-II

- 10. i) Let (Ω, \leq) be an uncountable well ordered set with a maximal element w_1 having the property that if $x \in \Omega$ and $x \neq w_1$ then $\{y \in \Omega : y \leq x\}$ is countable let τ be the order topology of Ω and let $\Omega_0 = \Omega = [w_1]$. Prove that $(\Omega_0, \tau_{\Omega_0})$ is countably compact but not compact.
 - ii) Define local compactness in topological spaces. If (X, τ) is a locally compact Hausdorff space then prove that for each point $p \in X$ and for each neighborhood V of p there is an open set U ad a compact subset k of X such that $p \in u$, $u \le v$, $u \le k$ and $k \subset \overline{U}$.

M 27245

11. i) When is a topological space X said to be a k-space. Illustrate with an example.

- Prove that the topological product of countable collective of metric spaces is metrizable.
- 12. Let (X, τ) be a topological space and let s be a sub basis for τ . If every cover of X by members of τ has a finite subcover then X is compact.

UNIT - III

i) Let (X, τ), (Y, U) and (Z, v) be topological spaces, let f₁, f₂: X → Y be continuous functions such that f₁ ⊆ f₂ and let g₁, g₂: Y → Z be continuous functions such that g₁ ⊂ g₂ that g₁ ∘ f₁ ⊆ g₂ ∘ f₂.

 Determine the fundamental group of a convex subset of the Euclidean space IRⁿ.

iii) Let (X, τ) and (Y, u) be topological spaces, let $h: X \to Y$ be a homeomorphism, let $x_0 \in X$ and let $y_0 = h(x_0)$. Then prove that $\pi_1(X_1, x_0)$ is isomorphic to $\pi_1(Y_1, y_0)$.

14. i) Let (X, τ) be a topological space and let $x_0 \in X$. Furthermore, let $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \Omega$ (X, x_0) and suppose $\alpha_1 \simeq_p \alpha_2$ and $\beta_1 \simeq_p \beta_2$. Then prove that $\alpha_1 * \beta_1 \simeq_p \alpha_2 * \beta_2$.

ii) Let (X, τ) and (Y, u) be topological spaces, let $x_0 \in X$ and $y_0 \in Y$ and let $h: (X, x_0) \to (Y, y_0)$ be a map. Establish that the homeomorphism h induces a homeomorphism has $\pi_1(X, x_0) \to \pi_1(Y, y_0)$.

15. i) State and prove covering path property.

ii) Is S' a contractible space? Why?