Reg. No.:

M 27243

Name:	

II Semester M.A./M.Sc./M.Com. Degree (Reg./Sup./Imp.) Examination, March 2015 MATHEMATICS (2014 Admn. Onwards) MAT 2C 06 – Advanced Abstract Algebra

Time: 3 Hours

Max. Marks: 60

PART-A

Answer any 4 questions. Each question carries 3 marks.

- 1. Give an example of a UFD, that is not a PID. Justify your claim.
- Prove that the integer 5 is not an irreducible as an element in Z[i].
- 3. Discuss the constructibility of the real numbers $\sqrt[3]{5}$ and $\sqrt[4]{5}$.
- 4. Find all the primitive 10th roots of unity and 5th roots of unity in \mathbb{Z}_{H} .
- 5. Prove that the field $\mathbb{Q}\left(\sqrt[3]{2}\right)$ is not a splitting field over \mathbb{Q} , where $\sqrt[3]{2}$ is the real cube root of 2.
- Define (finite) separable extension. What are the separable extensions of Q? Justify.

PART-B

Answer 4 questions without omitting any Unit. Each question carries 12 marks.

Unit - I

- 7. a) Prove that every Euclidean domain is a PID.
 - b) Define prime and irreducible elements in an integral domain. Give an example to show that an integral domain can contain irreducibles that are not primes.

P.T.O.

r and s in D [x].

- a) Let D be a UFD and F, the field of quotients of D. Prove that a non constant f (x) ∈ D [x] factors into a product of two polynomials of lower degrees r and
 - b) Show that the integral domain $\mathbb{Z}\left[\sqrt{-5}\right]$ is not a UFD. Give an example of a multiplicative norm on $\mathbb{Z}\left[\sqrt{-5}\right]$.

-2-

s in F [x] if and only if it has a factorization into polynomials of same degrees

- 9. a) Let E be an algebraic extension of F and $\alpha \in E$. Prove that there exists an irreducible polynomial $p(x) \in F[x]$ such that $p(\alpha) = 0$.
 - b) Compute deg (1 + i, Q) and deg (π , Q(π ³)).

Unit - II

- a) Prove that if E is a finite extension of a field F and K is a finite extension of E, then K is a finite extension of F and [K : F] = [K : E] [E : F].
 - b) Prove that the real fifth root of two, $\sqrt[5]{2}$ is not an element of $\mathbb{Q}(\sqrt[3]{2})$
- 11. a) Prove that if F is any finite field, then for every positive integer n, there is an irreducible polynomial in F [x] of degree n.
 - Find an irreducible polynomial of degree 3 in Z₃[x]. Describe an extension of Z₃ containing a zero of this polynomial.
- a) If F is a finite field of characteristic p, prove that the fixed field of the Frobenius automorphism of F is isomorphic to Z_n.
 - b) Find all the conjugates of $\sqrt[4]{2}$ over \mathbb{Q} . Also describe all the conjugation isomorphisms of $\mathbb{Q}(\sqrt[4]{2})$ onto subfields of $\overline{\mathbb{Q}}$. Which of them are automorphisms ?

Unit - III

- 13. a) Let E be a finite extension of a field F and σ be an isomorphism of F onto a field F'. Prove that the number of extensions of σ to an isomorphism of E onto a subfield of F' is finite and independent of F', F' and σ.
 - b) For what extensions (finite) E of a field F, $\{E:F\} = |G(E/F)|$? Justify.

- 14. a) Prove that every finite field is perfect.
 - b) Find a primitive element for the extension $\mathbb{Q}\left(\sqrt{2}, \sqrt[3]{2}\right)$ of \mathbb{Q} .
- 15. a) Let K be a finite normal extension of F, with Galois group G (K/F). For a field E, where F ≤ E ≤ K, define λ (E) as the subgroup of G (K/F) leaving E fixed. Prove that λ is a one-one map of the set of all intermediate fields between F and K onto the set of all subgroups of G (K/F).
 - b) Give an example of a normal extension F ≤ K for which the Galois group G (K/F) is isomorphic to Z₁₂.

-3-