Reg. No.:	
Name:	

II Semester M.A./M.Sc./M.Com. Degree (Regular/Supplementary/Improvement)

Examination, March 2015

MATHEMATICS

(2013 and Earlier Admn.)

Paper VIII : Topology - II

Time: 3 Hours

Max. Weightage: 60

Instructions: 1) Answer any four questions from Part A and Each question carries
3 marks

 Answer any four questions from Part B without omitting any Unit and each question carries 12 marks.

PART-A

 $(4 \times 3 = 12)$

- Define a directed set. Give an example.
- 2. Prove that continuous function preserves local compactness.
- 3. Show that $| d(x, z) d(y, z) | \le d(x, y)$ for x, y, z in a metric space M.
- Define co-finite filter and atomic filter.
- 5. Give an example of a second countable space.
- 6. Define Net and describe its convergence.

PART-B

 $(4 \times 12 = 48)$

UNIT - I

- a) Let {f_i: X → Y_i | i ∈ I } be a family of functions which distinguishes points from closed sets in X. Show that the evaluation map e : X → II_{iel} Y_i is open when regarded as a function from X onto e(X).
 - b) Prove that metrizability is a countably productive property.

- a) Let X = Π_{int} X_i, where X_i being a topological space. Show that the sequence {x_n} converges to x in X, if and only if for each i ∈ I, the sequence (π_i(x_n)) converges to π_i(x) in X_i.
- b) Prove that the topological product is regular if and only if each co-ordinate space is regular.
- a) Show that a topological space is Tychonoff space if and only if it is embeddable into a cube.
 - Show that a product space is locally connected if and only if each co-ordinate space is locally connected.

UNIT - II

- a) Prove that every filter is contained in an ultrafilter.
 - b) Prove that a first countable, countably compact space is sequentially compact.
- 11. a) Prove that a subset B of a space X is open if and only if no net in B^C can converge to a point in B.
 - b) Prove that the product space is compact if and only if each factor space is compact.
- 12. a) Prove that every countably compact metric space is second countable.
 - Prove that a space is Hausdorff if and only if every ultrafilter converges to at most one point.

UNIT - III

- 13. a) Prove that a metric space is compact if and only if it is complete and totally bounded.
 - b) Prove that every metric space can be isometrically embedded as a dense subspace of a complete metric space.
- 14. a) Define compactification of a topological space. Show that among all Hausdorff compactifications of a Tychonoff space, the Stone-Cech compactification if the largest one upto topological equivalence.
 - b) Prove that every locally compact, Hausdorff space is regular.
- a) Prove that any compact subset of a Hausdorff space is closed.
 - Prove that a subset of first category in a complete metric space cannot have any interior points.