M 27337

Reg. No. :

Name :

Second Semester M.A./M.Sc./M.Com. Degree (Regular/Supplementary/ Improvement) Examination, March 2015 MATHEMATICS

(2013 and Earlier Admn.) Paper – VI : Algebra – II

Time: 3 Hours

Max.Marks: 60

Instructions: 1) Answer any 4 questions from Part A.

- 2) Each question carries 3 marks.
- 3) Answer any 4 questions from Part B without omitting any Unit. Each question carries 12 marks.

PART-A

Answer any 4 questions. Each question carries 3 marks.

- 1. Prove that if p is an irreducible in a UFD, then p is a prime.
- 2. Prove that 6 does not factor uniquely (upto units) into irreducibles in $Z[\sqrt{-5}]$. Give two different factorizations.
- 3. Find an extension field of \mathbb{Z}_2 , containing a zero α of $x^2 + x + 1$ in $\mathbb{Z}_2[x]$.
- 4. Find the fixed field of $\Psi_{\sqrt{2},-\sqrt{2}}$ of $\mathbb{Q}(\sqrt{2})$.
- 5. Find the splitting field of $x^4 5x^2 + 6$ over Q.
- 6. If E is a finite extension of a field E, then prove that {E:F} divides [E:F]. (4x3=12)

PART-B

Answer any 4 questions without omitting any Unit. Each question carries 12 marks.

Unit - I

- 7. a) Define: Principal Ideal Domain. Give one example.
 - b) Prove that every PID is a UFD.
 - c) Prove that the integral domain Z is a UFD.

P.T.O.

- a) Prove that for a Euclidean domain with a Euclidean valuation v, v (1) is minimals among all v (a) for non-zero a∈D, and u∈D is a unit if and only if v (u) = v (1).
 - b) State the Euclidean algorithm to find the gcd of two integers a and b. Find the gcd of 22,471 and 3,266 and express it in the form λ (22471) + 3(3266) for $\lambda, \mu, \in \mathbb{Z}$.
- 9. a) Prove that Z [i] is a Euclidean domain.
 - b) Let p be an odd prime in \mathbb{Z} , and $p = a^2 + b^2$ for integers a and b in \mathbb{Z} . Prove that $p \equiv 1 \pmod{4}$

Unit - II

- 10. a) Prove that a finite extension field E of a field F is an algebraic extension of F.
 - b) If E is a finite extension field of a field F, and K is a finite extension field of E, then prove that K is a finite extension of F, and [K:F] = [K:E] [E:F].
- a) Prove that a field F is algebraically closed if and only if every non-constant polynomial in F [x] factors in F [x] into linear factors.
 - b) Prove that the field C of complex numbers is an algebraically closed field.
 - c) Find a basis of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q} .
- a) Let E be a finite extension of degree n over a finite field F. Prove that if F has q elements, then E has qⁿ elements.
 - b) Prove that a finite extension E of a finite field F is a simple extension of F.
 - c) If F is a finite field, then prove that for every positive integer n, there is an irreducible polynomial in F [x] of degree n.

Amsuncarry (Loquebuce surbuilt or III – Jint). Unit - Ench question cerries: 12 milities

- a) Define: The splitting field of f(x) over a field F. Give one example.
 - b) Prove that a field E, where $F \le E \le \overline{F}$, is a splitting field over F, if and only if every automorphism of \overline{F} leaving F fixed maps E onto itself and this induces an automorphism of E leaving F fixed.

- 14. a) Let \overline{F} be an algebraic closure of F, and let $f(x) = x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ be any monic polynomial in $\overline{F}[x]$. Prove that if $(f(x))^m \in F[x]$ and $m.1 \neq 0$ in F, then $f(x) \in F[x]$.
 - b) Prove that every field of characteristic '0' is perfect.
- 15. a) State the main theorem of Galois theory.
 - b) Show by an example that the lattice of subgroups of G(K/F) is the invorted lattice of intermediate fields of K over F.
 - c) Let K be a finite extension of degree n of a finite field F of P^r elements. Prove that G (K/F) is cyclic of order n, and is generated by σ_{p^r} where $\sigma_{p^r}(\alpha) = \alpha^{p^r}$ for $\alpha \in K$. (4×12=48)