M 25134

Reg. No.: .....

Name : .....

# II Semester M.A./M.Sc./M.Com. Degree (Reg./Sup./Imp.) Examination, March 2014 MATHEMATICS

Paper - VII: Real Analysis - II

Time: 3 Hours

Max. Marks: 60

- Instructions: 1) There are Part A and Part B. Part A has 6 questions out of which 4 are to be answered. Part B has 9 questions out of which 4 are to be answered without omitting any Unit.
  - Each question of Part A carries 3 marks and Part B carries
     marks.

# PART-A

Answer any four questions. Each question carries 3 marks.

- 1. Prove that the outer measure m\* is translation invariant.
- 2. Show that the sum and product of two simple functions are simple.
- 3. Show that we may have strict inequality in Fatou's Lemma.
- 4. Show that the sum of two absolutely continuous functions is absolutely continuous.
- 5. Let C = C[0, 1] be the space of all continuous functions on [0, 1] and define  $||f|| = \max |f(x)|$ . Show that  $\subset$  is a Banach space.
- 6. Define complete measure. Give an example.

 $(4 \times 3 = 12)$ 

## PART-B

Answer any four questions without omitting any Unit. Each question carries 12 marks.

### UNIT-1

- 7. a) Show that the family m of measurable sets is an algebra of sets.
  - b) Show that the interval  $(0, \infty)$  is measurable.





- 8. a) Construct a non measurable set.
  - b) If f is a measurable function and f = g a.e., then prove that g is measurable.
- 9. a) State and prove Fatou's Lemma.
  - b) Let g be integrable over E and let  $\langle f_n \rangle$  be a sequence of measurable functions such that  $|f_n| \le g$  on E and for almost all  $x \in E$  we have  $f(x) = \lim f_n(x)$ . Then

- 10. a) Let f be an increasing real-valued function on the interval [a, b]. Then prove that f is differentiable almost every where and  $\int f'(x) dx \le f(b) - f(a)$ 
  - b) Define functions of bounded variation. Give an example.
- 11. a) Show that a normed linear space X is complete if and only if every absolutely summable series is summable.
  - b) If f and g are in  $L^P$  with  $1 \le p \le \infty$ , then prove that  $f + g \in L^P$ .
- 12. a) Given  $f \in L^p, \, 1 and <math display="inline">\epsilon > 0$  , then prove that there is a step function  $\varphi$ and a continuous function  $\psi$  such that  $\left\|\,f-\varphi\,\right\|_p<\epsilon$  and  $\left\|\,f-\psi\,\right\|_p<\epsilon$  .
  - b) Let F be a bounded linear functional on  $L^p$ ,  $1 \le p < \infty$ . Then prove that there is a function g in  $L^{\epsilon}$  such that  $F(f) = \int fg$ .

-3-

M 25134

# UNIT-3

- 13. a) If  $E_i \in \mathfrak{B}$ ,  $\mu(E_1) < \infty$  and  $E_i > E_{i+1}$ , then prove that  $\mu\left(\bigcap_{i=1}^{\infty} E_i\right) = \lim_{n \to \infty} \mu(E_n)$ .
  - b) Let  $(x, \mathbb{G})$  be a measurable space,  $\langle \mu_n \rangle$  a sequence of measures that converge setwise to a measure  $\mu$ , and  $\langle f_n \rangle$  a sequence of nonnegative measurable functions that converge pointwise to the function f. Then prove that  $\int f d_{\mu} \leq \underline{\lim} \int f_n d\mu_n$ .
- 14. a) Prove that the union of a countable collection of positive sets is positive.
  - b) State and prove Lebesgue decomposition theorem.
- 15. a) Define measure and outer measure. Let μ be a measure on an algebra G, μ the outer measure induced by  $\mu$  and E any set. Then for  $\epsilon > 0$ , prove that there is a set  $A \in G_{\sigma}$  with  $E \subset A$  and  $\mu^*A \leq \mu^*E + \epsilon$ . Also prove that there is a set  $B \in G_{\sigma\delta}$  with  $E \subset B$  and  $\mu^*E = \mu^*B$ .
  - b) State and prove Tonelli's theorem.

 $(4 \times 12 = 48)$