

Reg. No.:	
Nama :	

II Semester M.A./M.Sc./M.Com. Degree (Reg./Sup./Imp.) Examination, March 2014 MATHEMATICS Paper – VIII : Topology – II

Time: 3 Hours

Max. Marks: 60

Instructions: 1) Answer any four questions from Part A and each question carries 3 marks.

 Answer any four questions from Part B without omitting any Unit and each question carries 12 marks.

PART-A

 $(4 \times 3 = 12)$

- Give an example of a T₁-space which is not a T₂-space.
- Give an example of a first countable T₂-space which is not metrizable.
- 3. Describe the notion of Filter convergence.
- Give an example of a second countable space.
- 5. Define Net and describe its convergence.
- 6. Define Riemann net.

PART-B

 $(4 \times 12 = 48)$

Unit - I

- 7. a) Let $X = \prod_{i \in I} X_i$, where X_i being a topological space. Show that the sequence $\{x_n\}$ converges to x in X, if and only if for each $i \in I$, the sequence $\{\pi_i(x_n)\}$ converges to $\pi_i(x)$ in X_i .
 - Prove that the topological product is regular if and only if each co-ordinate space is regular.

- a) Prove that if the product of an indexed family of sets is non-empty, then each projection is onto.
 - b) Prove that each co-ordinate space can be embeddable in a non-empty product space.
- a) Prove that a topological space is second countable if and only if all co-ordinate spaces are so and all except finitely many are indiscrete spaces.
 - b) Show that product space is locally connected if and only if each co-ordinate space is locally connected and all except finitely many of them are connected.

Unit - II

- a) State and prove Alexander Sub-base theorem.
 - b) Prove that a topological space is Hausdorff if and only if no filter can converge to more than one point in it.
- 11. a) Prove that sequential compactness is a countably productive property.
 - b) Prove that a first countable, countably compact space is sequentially compact.
- a) Prove that a subset of B of a space X is open if and only if no net in B^o can converge to a point in B.
 - b) Prove that every filter is contained in an ultrafilter.

Unit - III

- 13. a) Define compactification of a topological space. Show that among all Hausdorff compactifications of a Tychonoff space, the Stone-Cech compactification is the largest one upto topological equivalence.
 - b) Prove that every locally compact, Hausdorff space is regular.
- a) Prove that a metric space is compact if and only if it is complete and totally bounded.
 - b) Prove that a subset of first category in a complete metric space cannot have any interior points.
- a) Prove that any compact subset of a Hausdorff space is closed.
 - b) Prove that every metric space can be isometrically embedded as a dense subspace of a complete metric space.