tribe a state of the valuations to many point at a state of the (a) this

dust at elegated and last tween cath. W to strentings to

Reg. No.:.....

I Semester M.Sc. Degree (CBSS - Reg./Suppl./Imp.)
Examination, October - 2019
(2017 Admission onwards)
MATHEMATICS

MAT1C03: REAL ANALYSIS

Time: 3 Hours

Max. Marks: 80

Instructions to Candidate:

Answer any four questions from part A. Each question carries 4 marks. Answer any four questions from part B without omitting any unit. Each question carries 16 marks.

PART-A

- 1. For $x, y \in \mathbb{R}^1$, define $d(x, y) = \frac{|x y|}{1 + |x y|}$. Determine whether d is a metric on \mathbb{R}^1 .
- 2. Define discontinuity of the second kind and illustrate with an example.
- 3. If $c_0 + \frac{c_1}{2} + \dots + \frac{c_{n-1}}{n} + \frac{c_n}{n+1} = 0$, where c_0, c_1, \dots, c_n are constants, prove that the equation $c_0 + c_1x + \dots + c_{n-1}x^{n-1} + c_nx^n = 0$ has at least one real root between 0 and 1.
- 4. Suppose f is a bounded function on [a,b] and f² is Riemann integrable on[a,b]. Doesn't follow that f is Riemann integrable on [a,b]? Why?
- 5. If $f,g \in R(\alpha)$ on [a,b], prove that $f \in R(\alpha)$.
- 6. Determine whether the function f defined by $f(x) = x \cos(\frac{\pi}{2})$ if $x \neq 0$, f(0)=0 is of bounded variation on [0,1].

PART-B UNIT-I

(2)

- 7. a) Prove that every infinite subset of a countable set is countable.
 - b) Prove that the set of all sequences whose elements are the digits 0 and 1 is uncountable.
 - c) Let X be a metric space and $k \subset y \subset x$. Prove that k is compact relative to x if and only if k is compact relative to y.
- 8. a) Define a perfect set. Prove that a nonempty perfect set in \mathbb{R}^* is uncountable.
 - b) Prove that a subset E of R¹ is connected if and only if it has the following property:

If $x \in E$, $y \in E$, and x < z < y, then $z \in E$.

- a) Prove that a mapping f of a metric space X into a metric space Y is continuous if and only if f⁻¹ (V) is open in X for every open set V in Y.
 - b) Let f be a continuous mapping of a compact metric space into a metric space Y. Prove that f(x) is compact.
 - c) Let f be monotonic on (a,b). Prove that the set of point of (a,b) at which f is discontinuous is at most countable.

UNIT-II

- 10. a) Let f be defined on [a,b]. If f has a local maximum at a point $x \in (a,b)$, and if f'(x) exists, prove that f'(x) = 0
 - b) State and prove Taylor's theorem.
- 11. a) State L' Hospital's rule and show that it fails to hold for complex valued functions.
 - b) Define the Riemann-Stieltjes integral of f with respect to α over [a,b]. How is this integral related to the Riemann integral of f on [a,b]?
 - c) If f is monotonic on [a,b] and α is continuous on [a,b], prove that $f \in R(\alpha)$.

12. a) If $f_1, f_2 \in R(\alpha)$ on [a,b], prove that $f_1 + f_2 \in R(\alpha)$ and that $\int_a^b (f_1 + f_2) d\alpha = \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha$

(3)

b) Let f be a bounded real function on [a,b], α increases monotonically and $\alpha' \in R$ on [a,b]. Prove that $f \in R(\alpha)$ if and only if $f\alpha' \in R$ on [a,b] and $\int_a^b f d\alpha = \int_a^b f(x) \alpha'(x) dx$.

UNIT-III

- 13. a) Let $f \in R$ on [a,b]. For $a \le x \le b$, define $F(x) = \int_{a}^{x} f(t) dt$. Prove that F is continuous on [a,b].
 - b) State and prove the fundamental theorem of calculus.
 - c) When is a function f said to be of bounded variation on [a,b] ? If f is continuous on [a,b] and if f' exists and is bounded on (a,b), i.e |f'(x)| ≤ A for all x∈(a,b), prove that f is of bounded variation on [a,b].
- 14. a) If f is of bounded variation on [a,b], prove that f is bounded on [a,b]. Is the converse true? Justify your claim.
 - b) Let f be of bounded variation on [a,b]. Define V by $V_f(a,x)$ if a $a < x \le b$ and V(a) = 0. prove that every point of continuity of f is also a point of continuity of V. Also prove that the converse is true.
- 15. a) Let f be of bounded variation on [a,b] and let $c \in (a,b)$. prove that f is of bounded variation on [a,c] and [c,b], and $V_t(a,b) = V_t(a,c) + V_t(a,b)$.
 - b) Let f be of bounded variation on [a,b]. Let V be defined on [a,b], by V(x)=V₁ (a,x) if a<x≤b and V(a) = 0. Prove that V and V f are increasing functions on [a,b].</p>