K19P 1520

Reg.	No.	:
Mana		

| Semester M.Sc. Degree (CBSS - Reg./Suppl./Imp.) Examination,

October - 2019

(2017 Admission onwards) ALLERAR

MATHEMATICS

MAT1C05: DIFFERENTIAL EQUATIONS

Time: 3 Hours

Max. Marks: 80

Instructions: Answer any Four questions from part A. Each question carries

4 marks. Answer any Four questions from part B without omitting

any unit . Each question carries 16 marks.

PART-A

- 1. Find a power series solution in the form $\sum a_n x^n$ for the differential equation y' = 2xy. Verify your solution by solving the equation directly.
- 2. Define F(a,b,c,x) and show that $\sin^{-1} x = xF(\frac{1}{2},\frac{1}{2},\frac{3}{2},x^2)$.
- 3. State Rodrigues' formula for Legendre polynomial, use it to compute $P_n(x), P_1(x)$ and $P_2(x)$.
- 4. Show that x=e4t, y=e4t and x=e-2t, y=-e-2t are solutions of the system $\frac{dx}{dt} = x + 3y$, $\frac{dy}{dt} = 3x + y$ and that these solutions are linearly independent on every closed interval.
- 5. Explain how to reduce the differential equation y'' + P(x)y' + Q(x)y = 0 to the normal form.
- 6. Starting with $y_0(x)=1$ apply Picard's method to find $y_1(x)$ and $y_2(x)$ for the initial value problem $y' = y^2$, y(0)=1.

PART-B UNIT-I

(2)

- 7. a) Let x₀ be an ordinary point of y"+P(x)y'+Q(x)y = 0 and a₀ and a₁ are arbitrary constants. Prove that there exists a unique function analytic at 0, which is a solution of the differential equation in a neighborhood of 0 satisfying the initial conditions y(0)=a₀ and y'(0) = a₁.
 - b) Find the general solution of y'' + xy = 0 about the ordinary point x=0.
- b. a) Verify that origin is a regular singular point of the equation 4xy'' + 2y' + y = 0. Also find two independent Frobenius series solutions.
 - b) Find two independent Probenius series solutions of $xy''-y'+4x^2y=0$.
- a) Define hypergeometric series and derive this series as a solution of Gauss' hypergeometric equation.
 - b) Verify that the Gauss' hypergeometric equation has $x = \infty$ as a regular singular point with exponents a and b.

UNIT-II

- 10. a) Derive the recursion formula for Legendre polynomials $(n-1)P_{n+1}(x)=(2n+1)x P_n(x)-nP_{n-1}(x)$.
 - b) Establish the orthogonal property of Legendre polynomials $\int_{-1}^{1} P_m(x) P_n(x) = \begin{cases} 0 & \text{if } m \neq n \\ \frac{2}{2n+1} & \text{if } m = n \end{cases}$
 - c) Find the first three terms of the Legendre series of f(x)=ex.
- 11. a) Show that $\frac{d}{dx}[J_0(x)] = -J_1(x)$. Deduce that between any two positive zeros of $J_0(x)$ there is a zero of $J_1(x)$.
 - b) Prove that $\frac{d}{dx} \left[x^{\rho} J_{\rho}(x) \right] = x^{\rho} J_{\rho-1}(x)$ and $\frac{d}{dx} \left[x^{-\rho} J_{\rho}(x) \right] = -x^{-\rho} J_{\rho+1}(x)$. Using these derive the recurrence formula $\frac{2p}{x} J_{\rho}(x) = J_{\rho-1}(x) + J_{\rho+1}(x)$.

12. a) If the two solutions $x=x_1(t)$, $y=y_1(t)$ and $x=x_2(t)$, $y=y_2(t)$ of the system $\frac{dx}{dt}=a_1(t)x+b_1(t)y$, $\frac{dy}{dt}=a_2(t)x+b_2(t)y$ have a Wronskian that does not vanish on [a,b], then prove that $x=c_1x_1(t)+c_2x_2(t)$, $y=c_1y_1(t)+c_2y_2(t)$ is the general solution of the system on [a,b] for any constants c_1 and c_2 .

(3)

b) Find the general solution of the system $\frac{dx}{dt} = 3x - 4y$, $\frac{dy}{dt} = x - y$.

UNIT-III

- 13. a) State and prove the sturm separation theorem.
 - b) Let u(x) be a nontrivial solution of u'' + q(x)u = 0, where q(x)>0 for all x>0. If $\int_{1}^{\infty} q(x)dx = \infty$, prove that u(x) has infinitely many zeros on the positive x-axis.
- 14. Let f(x,y) and $\frac{\partial t}{\partial y}$ be continuous functions of x and y on a closed rectangle R with sides parallel to the axes. If (x_0,y_0) is any interior point of R, prove that there is a number h with the property that the initial value problem y' = f(x,y), $y(x_0) = y_0$ has a unique solution on the interval $|x x_0| \le h$.
- 15. a) Show that $f(x,y)=xy^2$.
 - i) Satisfies a Lipschitz condition on any rectangle $a \le x \le b$ and $c \le y \le d$.
 - ii) does not satisfy a Lipschitz condition on any strip $a \le x \le b$, $-\infty < y < \infty$
 - b) Solve the system of first order equations by Picard's method.

$$\frac{dy}{dx} = z , y(0) = 1$$

$$\frac{dz}{dx} = -y, \ z(0) = 0.$$