- 14. a) If there exists a Liapunov function E(x,y) for the system $\frac{dx}{dt} = F(x,y)$, $\frac{dy}{dt} = G(x,y)$, then prove that the critical point (0,0) is stable. Further if $\frac{\partial E}{\partial x}F + \frac{\partial E}{\partial y}G$ is negative definite, then prove that the critical point (0,0)
 - b) Show that (0, 0) is a stable critical point of the system $\frac{dx}{dt} = -2yx$, $\frac{dy}{dt} = x^2 y^3$.

is asymptotically stable.

- 15. a) Let f(x, y) be a continuous function that satisfies a Lipschitz condition $|f(x, y_1) f(x, y_2)| \le K |y_1 y_2|$ on a strip $a \le x \le b$, $-\infty < y < \infty$. If (x_0, y_1) is any point of the strip prove that the initial value problem y' = f(x, y), $y(x_0) = y_0$ has a unique solution y = y(x) on the interval $a \le x \le b$.
 - b) Show that $f(x, y) = xy^2$ satisfies a Lipschitz condition on any rectangle $a \le x \le b, c \le y \le d$.

vide × 0 = 3th midays with to nothing qualitatic will be an in time in place and u in the wind

Reg. No. :

Name :

I Semester M.Sc. Degree (Reg./Sup./Imp.) Examination, November 2015
(2014 Admn. Onwards)

MATHEMATICS

MAT1C05 : Differential Equations

Time: 3 Hours Max. Marks: 60

PART - A

Answer four questions from this part. Each question carries 3 marks.

- 1. Find the solution of y' = 2xy in the form of a power series $\sum_{n=0}^{\infty} a_n x^n$. Also solve the equation directly.
- 2. Find the indicial equation and its roots of $x^3y'' + (-1 + \cos 2x)y' + 2xy = 0$.
- 3. Using the generating relation $(1-2xt+t^2)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}P_n(x)t^n$ where $P_n(x)$ is the n^{th} Legendre polynomial, show that (n+1) $P_{(n+1)}(x)=(2n+1)$ x $P_n(x)-n$ $P_{n-1}(x)$.
- 4. Find the general solution of the system $\frac{dx}{dt} = x + y$, $\frac{dy}{dt} = 4x 2y$.
- 5. For the system $\frac{dx}{dt} = y(x^2 + 1)$, $\frac{dy}{dt} = 2xy^2$.
 - i) Find the critical points
 - ii) Find differential equation of the paths and
 - iii) Solve this equation to find the paths.
- State Picard's theorem. Explain how Lipschitz condition is related to Picard's theorem.

PART-B

-2-

Answer any four questions from this Part without omitting any Unit. Each question carries 12 marks.

Unit - I

- 7. a) Find the general solution of
 - $(1 + x^2) y'' + 2xy' 2y = 0$ in terms of power series in x. Can you express this function in terms of elementary functions?
 - b) For the equation 4xy'' + 2y' + y = 0, verify that origin is a regular singular point and calculate two independent Frobenius series solutions.
- 8. a) Show that the equation $4x^2y'' 8x^2y + 4(x^2 + 1)y = 0$ has only one Frobenius solution. Also find the general solution.
 - b) Find two linearly independent series solutions valid for |x| < 1 of the equation $(1-x^2) y'' xy' + p^2y = 0$, where p is a constant.
- a) Define Gauss's hypergeometric equation and obtain the hypergeometric series
 as a solution of this equation.
 - b) Show that $\cos x = \lim_{a \to \infty} F\left(a, a, \frac{1}{2}, \frac{-x^2}{4a^2}\right)$.

Unit - II

- 10. a) Obtain the solution of the Legendre equation $(1-x^2)y'' 2xy' + n(n+1)y = 0$, where n is a nonnegative integer, bounded near x = 1 as a hypergeometric series.
 - b) Find the first three terms of the Legendre series of $f(x) = e^x$.

-3-

b) With usual notation, prove that

$$\int_0^1 x \; J_p(\lambda_m x) J_p(\lambda_n \; x) dx = \begin{cases} 0 & , & \text{if } m \neq n \\ \\ \frac{1}{2} J_{p+1}(\lambda_n)^2 \; , & \text{if } m = n \end{cases}, \quad \text{if } m = n \end{cases}$$

- 12. a) If $x = x_1(t)$, $y = y_1(t)$ and $x = x_2(t)$, $y = y_2(t)$ are two linearly independent solutions on [a, b] of the system $\frac{dx}{dt} = a_1x + b_1y$, $\frac{dy}{dt} = a_2x + b_2y$, then prove that the general solution of the system is $y = c_1x_1(t) + c_2x_2(t)$, $y = c_1y_1(t) + c_2y_2(t)$, where c_1 and c_2 are any constants.
 - b) Solve the system $\frac{dx}{dt} = 3x 4y$, $\frac{dy}{dt} = x y$.

Unit - III

- 13. a) If the roots m_1 and m_2 of the auxiliary equation of the system $\frac{dx}{dt} = a_1x + b_1y$, $\frac{dy}{dt} = a_2x + b_2y \text{ where } a_1b_2 a_2b_1 \neq 0 \text{ are conjugate complex but not pure}$ imaginary, then prove that the critical point (0,0) is a spiral.
 - b) Determine the nature and stability properties of the critical point (0, 0) of the system $\frac{dx}{dt} = -x 2y$, $\frac{dy}{dt} = 4x 5y$.