ET TIME

 a) Las T be the usual tripology on Bt. Prove that a subset of trip connected if and only if it is an interval.

To the terms that the topological eine curve is not pathwise connected.

It at List DC. To be a connected agrice, let O be arropen cover of X, and let a, b be

d bnais, atpenned that a state of the state

a) Preve that every plosed subset of a compact space is compact. Deduce that

 Prove that a repotogical space (X, T) is compact if and only if every family of eleged subsets of X with the finite intersection property has a nonempty K15P 0298

Reg.	No.	:	

Name :

I Semester M.Sc. Degree (Reg./Sup./Imp.) Examination, November 2015 (2014 Admn. Onwards)

MATHEMATICS
MAT 1C04: Basic Topology

Time: 3 Hours Max. Marks: 60

PART - A

Answer four questions from this Part. Each question carries 3 marks.

- 1. Let X be an infinite set and let $T = \{U \in P(X) : U = \phi \text{ or } X U \text{ is finite}\}$. Prove that T is a topology on X.
- 2. Is the usual topology on Rsecond countable? Justify your answer.
- Define the subspace topology. If T is the usual topology on IR, describe the subspace topology on the set of all integers.
- 4. Let $X = \{1, 2, 3\}$, $T = \{\phi, \{1\}, \{1, 2\}, X\}$, $Y = \{4, 5\}$ and $U = \{\phi, \{4\}, Y\}$. Find a basis for the product topology on $X \times Y$.
- 5. Prove that the closed unit interval [0, 1] has the fixed point property.
- 6. Determine whether the real line with the usual topology is compact.

$(4 \times 3 = 12)$

PART-B

Answer four questions from this Part without omitting any Unit. Each question carries 12 marks.

boat 7 to stand a al (Ta U late of TUNIT-I

- a) Give an example of a set X and topologies T₁ and T₂ on X such that T₁ ∪ T₂ is not a topology on X, justifying your claim.
 - State and prove a necessary and sufficient condition for a family of subsets of a set X to be a basis for a topology on X.

P.T.O.

K15P 0298

- 8. a) Let A be a subset of a topological space (X, T). Prove that A is closed if and only if A' CA.
 - b) Let A and B be subsets of a topological space (X, T). Prove that
 - i) $A \subseteq B$ whenever $A \subseteq B$.
 - ii) $A \cap B \subseteq A \cap B$, Further show by an example that the inclusion in part (ii) cannot be replaced by an equality.
- 9. a) If d is the usual metric on IR, prove that (IR, d) is complete.
 - b) Prove that metrizability is a topological property.

UNIT-II

- 10. a) Prove that the property of being a Hausdorff space is hereditary, but being separable is not hereditary.
 - b) Prove that every subspace of a separable metric space is separable.
- 11. a) Let (X_1, T_1) and (X_2, T_2) be topological spaces and let $(X_1 \times X_2, T)$ be the product space. Prove that the projections $\pi_1: X_1 \times X_2 \to X_1$ and $\pi_2: X_1 \times X_2 \to X_2$ are continuous. Further prove that the product topology is the smallest topology for which both projections are continuous.
 - b) Define box topology and product topology on the product of an indexed family of topological spaces. For each $n \in \mathbb{N}$, let $X_n = \{1, 2\}$ and let T_n be the discrete topology on X_n . Let $X = \prod_{n \in N} X_n$ and T be the product topology on X and U be the box topology on X. Show that $T \neq U$.
- 12. a) Let (X, T) be a topological space, let $\{X_{\alpha}, T_{\alpha}\}: \alpha \in A\}$ be a collection of topological spaces and for each $\alpha \in \land$, let $f_{\alpha}: X \to X_{\alpha}$ be a continuous function. Prove that the collection $\{f_{\alpha}^{-1}(U_{\alpha}): \alpha \in \wedge \text{ and } U_{\alpha} \in T_2\}$ is a basis for T if and only if $\{f_2 : \alpha \in A\}$ separates points from closed sets.
 - b) Let $\{(X_{\alpha}, T_{\alpha}): \alpha \in \land\}$ be an indexed family of first countable spaces, and let $X = \prod_{\alpha \in \wedge} X_{\alpha}$. Prove that (X, T) is first countable if and only if T_{α} is the trivial topology for all but a countable number of α .

K15P 0298

UNIT - III

- 13. a) Let T be the usual topology on IR. Prove that a subset of IR is connected if and only if it is an interval.
 - b) Prove that the topological sine curve is not pathwise connected.
- 14. a) Let (X, T) be a connected space, let O be an open cover of X, and let a, b be distinct points of X. Prove that there is a simple chain consisting of members of O that connects, a and b.
 - b) Let (X, d) be a totally bounded complete metric space. Prove that (X, d) is compact.
- 15. a) Prove that every closed subset of a compact space is compact. Deduce that the Cantor set is compact.
 - b) Prove that a topological space (X, T) is compact if and only if every family of closed subsets of X with the finite intersection property has a nonempty $(4 \times 12 = 48)$ intersection.