Reg. No. :

Name :

I Semester M.Sc. Degree (Reg./Sup./Imp.) Examination, November 2015 (2014 Admn. Onwards) MATHEMATICS MAT 1C02: Linear Algebra

Time: 3 Hours

the brancebook whee all red. It It bent some traditions were a self. But It ...

money of the contract of the second will be a second the second that the second second will be second to the second of the secon

Max. Marks: 60

PART-A

Answer any 4 questions. Each question carries 3 marks:

- 1. Find the nullspace of the linear operator T from \mathbb{R}^3 to \mathbb{R}^3 defined by T (x, y, z) = (2x, x + y, x + y + z). Is T invertible? Why?
- 2. Find a linear operator T on \mathbb{R}^3 such that $T^3 = 0$ but $T^2 \neq 0$.
- 3. Find all the characteristic values of the operator: $T(x_1, x_2) = (0, x_1 + x_2)$ defined on C2.
- 4. Let T be a linear operator on an n-dimensional vector space V. If Tk = 0 for some positive integer k, then prove that $T^n = 0$.
- 5. Prove that if E is a projection of a vector space V and $\beta \neq 0$ is a vector in the range of E, then the cyclic sub-space Z (β ; E) of V generated by β is one-dimensional.
- 6. Show that if (1) denotes an inner product defined on V and $(\alpha \mid \beta) = 0$ for all β in $(4 \times 3 = 12)$ V, then $\alpha = 0$.

PART-B

Answer 4 questions without omitting any Unit. Each question carries 12 marks :

Unit - I

7. a) Let T be a linear transformation from V into W. Prove that if T is invertible, then the inverse function T-1 is a linear transformation from W onto V.

5

7

ł) Let T be a linear operator on V v	vith range R and null space N. Prove that the
	following are equivalent:	

i)
$$R \cap N = \{0\}$$

ii) If
$$T(T\alpha) = 0$$
,

then $T\alpha = 0$.

c) Does there exist a linear transformation T from R3 into R3 whose range and null space are identical?

8. a) Let V be an n-dimensional vector space over F and $\mathfrak{B} = \{\alpha_1, ..., \alpha_n\}$ be a basis for V. Prove that the linear functionals f_i , ..., f_n defined by f_i (α_i) = δ_{ij} form a basis for the dual space V^* of V. Also show that, for each α in V,

$$\alpha = \sum_{i=1}^{n} f_i(\alpha) \alpha_i$$

b) Let W be the subspace of \mathbb{R}^3 spanned by (1, 0, 1) (0, 1, 1) and (2, -1, 1). Find a basis for Wo.

9. a) Let g, f, f,, f, be linear operators on a vector space V with respective null spaces N, N, ..., N. Prove that g is a linear combination of f, ..., f, if and only if N contains the intersection $N_1 \cap ... \cap N_r$.

b) Let f be the linear functional on F^2 defined by $f(x_1, x_2) = x_1 + x_2$. Describe the linear functional Ttf if T is given by:

i) T
$$(x_1, x_2) = (x_1, 0)$$

ii)
$$T(x_1, x_2) = (-x_1, x_2)$$

Unit - II

- 10. a) Prove that if T is a linear operator on a finite-dimensional vector space V, then the characteristic and minimal polynomials for T have the same roots, except for multiplicities.
 - b) If T $(x_1, x_2, x_3) = (3x_1 + x_2 x_3, 2x_1 + 2x_2 x_3, 2x_1 + 2x_2)$ is defined on R³, verify whether or not T is diagonalizable.
- 12 11. State and prove the Cayley-Hamilton theorem.

12. a) Let E be a projection on a finite-dimensional vectors pace V. Prove that:

- i) A vector β is in the range of E if and only if $E\beta = \beta$
- ii) V = R \oplus N, where R is the range and N is the nullspace of E, and

-3-

- iii) E is diagonalizable.
- b) Find two proper subspaces W_1 and W_2 of \mathbb{R}^2 such that $\mathbb{R}^2 = W_1 \oplus W_2$. Also find a projection on \mathbb{R}^2 such that \mathbb{R} (E) = \mathbb{W}_1 and \mathbb{N} (E) = \mathbb{W}_2 .

Unit - III

13. a) Let T be a diagonalizable linear operator on a finite-dimensional space V, with the district characteristic values C1, ... Ck. Prove that these exist linear operators E1, ..., Ek such that:

i)
$$T = C_1 E_1 + ... + C_k E_k$$

- ii) $I = E_1 + ... + E_k$
- iii) $E_i E_i = 0$ for $i \neq j$
- iv) $E_i^2 = E_i$ and

- v) The range of Ei is the characteristic space for T associated with Ci.
- b) If T $(x_1, x_2, x_3) = (x_2, x_3, x_1)$, for $(x_1, x_2, x_3) \in \mathbb{R}^3$, prove that T has a cyclic
- 14. a) State cyclic decomposition theorem.
 - b) Find all possible Jordan forms of a 5 x 5 complex matrix with characteristic polynomial $(x-1)^3 (x+2)^2$.
- 15. a) Let V be an inner product space and $\beta_1, \dots \beta_n$ be linearly independent vectors in V. Prove that there exist orthogonal vectors $\alpha_1, ..., \alpha_n$ in V such that for i = 1, 2, ..., x, the set $\{\alpha_1, ..., \alpha_i\}$ is a basis for the subspace spanned by $\{\beta_1, ..., \beta_i\}$.
 - b) Let W be a subspace of the inner product space V and let $\beta \in V$. Prove that if $\alpha \in W$ is a best approximation to β by vectors in W, then $\beta - \alpha$ is orthogonal to every vector in W.

 $(4 \times 12 = 48)$

9

3

3

9