materials are privated and fart average and T., War W. T. War With the W. W.

Reg. No. :

Name:.....

I Semester M.A./M.Sc./M.Com. Degree (Reg./Supp./Imp.) Examination, November 2014 (2013 & Earlier Admn.)

Mathematics
Paper – II: LINEAR ALGEBRA

Time: 3 Hours Max. Marks: 60

Instructions: 1) Part – A: Answer any four questions. Each question carries 3 marks.

Part – B: Answer any four questions without omitting any Unit.
 Each question carries 12 marks.

eventomed. I blad a processor total PART-A promit conversor and Vis. I to

- 1. Let T be the function from \mathbb{R}^2 into \mathbb{R}^2 defined by T $(x_1, x_2) = (x_2, x_1)$. Show that T is a linear transformation.
- 2. If M is an R-module and $x \in M$, then prove that the set $K = \{rx + nx : r \in R, n \in \mathbb{Z}\}$ is an R-submodule of M containing x.
- 3. In \mathbb{R}^3 , let $\alpha_1=(1,0,1)$, $\alpha_2=(0,1,-2)$, $\alpha_3=(-1,-1,0)$. If f is a linear functional on \mathbb{R}^3 such that $f(\alpha_1)=1$, $f(\alpha_2)=-1$, $f(\alpha_3)=3$, and if $\alpha=(a,b,c)$, find $f(\alpha)$.
- 4. Prove that similar matrices have the same characteristic polynomial.
- 5. State Cyclic Decomposition Theorem.
- 6. Let V be an inner product space, W a finite dimensional subspace, and E the orthogonal projection of V on W. Then prove that the mapping $\beta \to \beta E\beta$ is the orthogonal projection of V on W².

PART-B

-2-

UNIT-I

- a) Let V and W be vector spaces over the field F and let T be a linear transformation from V into W. If V is finite dimensional, then prove that rank (T) + nullity (T) = dim V.
 - b) Describe explicitly a linear transformation from ℝº into ℝ⁰ which has its range the subspace spanned by (1, 0, −1) and (1, 2, 2).
- a) Let T be a linear transformation from V into W. Then prove that T is non-singular if and only if T carries each linearly independent subset of V onto a linearly independent subset of W.
 - b) State and prove fundamental theorem of R-homomorphisms.
- 9. a) Let M be a free R-module with a basis $(e_1, e_2, ..., e_n)$. Then prove that $M \approx R^n$.
 - b) Let V be a non-zero finitely generated vector space over a field F. Then prove that V admits a finite basis.

UNIT-II

- a) Let V be a finite dimensional vector space over the field F, and W be a subspace of V. Then prove that dim W + dim W^o = dim V.
 - b) If W_1 and W_2 are subspaces of a finite dimensional vector space, then prove that $W_1 = W_2$ if and only if $W_1^0 = W_2^0$.
- a) Let T be a linear operator on an n-dimensional vector space V. Then prove that the characteristic and minimal polynomials for T have the same roots, except for multiplicities.
 - b) Find the minimal polynomial for the matrix $A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$.

- 12. a) Let V be a finite dimensional vector space over the field F and Let T be a linear operator on V. Then prove that T is a triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.
 - b) Let W be an invariant subspace for T. Prove that the minimal polynomial for the restriction operator Tw divides the minimal polynomial for T, without referring to matrices.

-3-

UNIT - III

- 13. Let V be a finite dimensional vector space. Let W₁, W₂,, W_k be subspaces of V and let W = W₁ + W₂ + + W_k. Then prove that the following are equivalent.
 - a) W, W, ..., W, are independent.
 - b) For each j, $2 \le j \le k$, we have

$$W_i \cap (W_1 + W_2 + \dots + W_{i-1}) = \{0\}.$$

- c) If \mathscr{B}_i is an ordered basis for W_i , $1 \le i \le k$, then the sequence $\mathscr{B} = (\mathscr{B}_1, \mathscr{B}_2, ..., \mathscr{B}_k)$ is an ordered basis for W.
- State and prove primary decomposition theorem.
- 15. a) If V is an inner product space, then for any vectors α,β in V , prove that
 - i) $\|(\alpha | \beta) \le \|\alpha\| \|\beta\|$ and
 - ii) $\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$.
 - b) Prove that an orthogonal set of non-zero vectors is linearly independent.