is all Properties of supermittative they with unity, then an load of the Hale a supermittative they of the supermittative they are need.

M 26572

Reg. No. :

Name :

I Semester M.A./M.Sc./M.Com. Degree (Reg./Sup./imp.)
Examination, November 2014
(2014 Admn. – under CBSS)
MATHEMATICS

MAT1C01: Basic Abstract Algebra

Time: 3 Hours Max. Marks: 60

PART-A

Answer any 4 questions. Each question carries 3 marks.

- Find a cyclic subgroup of maximum order in Z₁₂ × Z₁₆.
- 2. Prove that any group of order 2^n , where n > 1 has a nontrivial normal subgroup.
- 3. Verify the third isomorphism theorem for the subgroups $K = \langle 6 \rangle$ and $H = \langle 3 \rangle$ of \mathbb{Z}_{18} .
- Find a subnormal series, with atleast five nontrivial subgroups, of the group of real numbers Runder addition.
- 5. Find the Kernel of the evaluation homomorphism $\phi_{\alpha}: \mathbb{Q}[x] \to \mathbb{R}$, when $\alpha = \pi$ and $\alpha = 3$
- 6. Find all zeros of the polynomial $x^4 + 2x^3 + 2x + 3$ in \mathbb{Z}_4 .

PART-B

Answer 4 questions without omitting any Unit. Each question carries 12 marks.

Unit - I

- a) Prove that the finite indecomposable abelian groups are exactly the cyclic groups with order a power of a prime.
 - b) Consider an equilateral triangle T with vertices 1, 2 and 3; and sides S₁, S₂, and S₃. Describe the action of S₃ as the group of symmetrics, on T by describing the action of each element of S₃ on the vertices and sides of T.

P.T.O.

6

6

8	. a)	If X is a G – set and $x \in X$, prove that $ Gx = (G : G_x)$.	8
	b)	Find all sylow 2-subgroups and sylow 3-subgroups of Z ₁₂ .	4
9	. a)	Prove that if G is a finite group and p divides $ G $, then the number of sylow p-subgroups of G is congruent to 1 modulo p and divides $ G $.	9
	b)	Find all groups upto isomorphism of order p ² .	3
		Unit – II	
10	. a)	Prove that if D is an integral domain and F is a field containing D, then F contains a field of quotients of D.	9
	b)	Let K and N be normal subgroups of G with $K \lor N = G$, and $K \cap N = \{e\}$. Show that $G/K \simeq N$ and $G/N \simeq K$.	3
11.	a)	State the first isomorphism theorem.	2
	b)	Find isomorphic refinements of the series $\{0\} < \langle 5 \rangle < \mathbb{Z}_{40}$ and $\{0\} < \langle 4 \rangle < \mathbb{Z}_{40}$.	6
	c)	Prove that the group of symmetrics of the square D ₄ is solvable.	4
12.	a)	Prove that a non-zero free abelian group of rank r is isomorphic to $\mathbb{Z} \times \mathbb{Z} \times \times \mathbb{Z}$ for r factors.	6
	b)	Is the group Zn free ? Explain.	3
	c)	Is $\{(2,0), (0,2)\}$ a basis for $\mathbb{Z} \times \mathbb{Z} ?$ Why?	3
		Unit – III	
13.	a)	Prove that a finite subgroup of the multiplicative group $\left\langle F^*, {\scriptstyle \bullet} \right\rangle$ of a field F is cyclic.	8
	b)	Find a second degree polynomial in $\mathbb{Z}_4[x]$, which is a unit.	4

14.	a)	Prove that if $\varphi: R \to R'$ is a ring homomorphism, then ker (φ) is an ideal of R.	3
	b)	Describe all ring homomorphisms of $\mathbb{Z} \times \mathbb{Z}$ into $\mathbb{Z} \times \mathbb{Z}$.	6
	c)	Describe the ring 2ZZ / 4ZZ by giving the addition and multiplication tables. Is if isomorphic to \mathbb{Z}_2 ? Why ?	3
15.	a)	Prove that if R is a commutative ring with unity, then an ideal M of R is a maximal ideal if and only if R/m is a field.	9
,	b)	Find all $a \in \mathbb{Z}_3$ such that $\mathbb{Z}_3[x] / \langle x^2 + a \rangle$ is a field.	3