A) Last be defined by tip = a feet of a Find, the tength of the

M 26574

Reg. No. :	
------------	--

I Semester M.A./M.Sc./M.Com. Degree (Reg./Sup./Imp.) Examination, November 2014 (2014 Admission - Under CBSS) MATHEMATICS

MAT 1C03: Real Analysis

Max. Marks: 60 Time: 3 Hours

PART-A

Answer any four questions from this Part. Each question carries 3 marks.

- 1. Show that the union of Rn infinite collection of closed sets in a metric space need not be closed.
- 2. Let I = [0, 1] be the closed unit interval and f be a continuous mapping of I into I. Prove that f(x) = x for at least one $x \in I$.
- 3. Let f be defined for all real x and suppose that $|f(x) f(y)| \le (x y)^2$ for all real x and y. Prove that f is constant.
- 4. If f(x) = 0 for all irrational x, f(x) = 1 for all rational x, then show that f is not Riemann integrable on [0, 1].
- 5. Let f be a function of bounded variation on [a, b]. Prove that f is bounded on [a, b].
- 6. Determine whether $f(x) = x \cos\left(\frac{\pi}{2x}\right)$ if $x \neq 0$, f(0) = 0 is of bounded variation

PART-B

Answer any four questions from this Part without omitting any Unit. Each question carries 12 marks.

UNIT - I PURE NIMEX ...

- 7. a) Define a metric space. For x, $y \in \mathbb{R}^1$, show that $d(x, y) = \frac{|x-y|}{1+|x-y|}$ defines a metric on \mathbb{R}^1 .
 - b) Prove that every k-cell is IRk is compact.
- a) Let E be a subset of IR^k. If every infinite subset of E has a limit point in E, then prove that E is closed and bounded.
 - b) If P is a nonempty perfect set in IR^k, then prove that P is uncountable. Deduce that the set of real numbers is uncountable.
- a) Let f be a continuous mapping of a compact metric space X into a metric space Y. Prove that f is uniformly continuous on X.
 - b) Define discontinuities of the first and second kinds of a function at a point.
 Give an example of each type.

UNIT - II

- a) State and prove the Taylor's theorem.
 - b) If $C_0 + \frac{C_1}{2} + ... + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0$, where C_0 , C_1 , ..., C_n are real constants, prove that the equation C_0 , $C_1 \times +.... + C_n \times^n = 0$ has at least one real root between 0 and 1.
- 11. a) Let f be a continuous mapping of [a, b] into IR^k and f is differentiable in (a, b). Prove that there exists $x \in (a, b)$ such that $|f(b) f(a)| \le (b a) |f'(x)|$.
 - b) Prove that $f \in R(\alpha)$ on [a, b] is and only if for every $\epsilon > 0$ there exists a partition P such that $U(P, f, \alpha) L(p, f, \alpha) < \epsilon$.

- 12. a) If f is continuous on [a, b], prove that $f \in R(\alpha)$ on [a, b].
 - b) Assume α increases monotonically and $\alpha' \in R[a,b]$. Let f be a bounded real function on [a,b]. Prove that $f \in R(\alpha)$ if and only if $f\alpha' \in R[a,b]$ and that $\int\limits_{a}^{b} f \, d\alpha = \int\limits_{a}^{b} f(x)\alpha'(x) \, dx$

UNIT - III

13. a) Let f be Riemann integrable on [a, b]. For $a \le x \le b$, put $F(x) = \int\limits_a^x f(t) \, dt$.

Prove that:

- i) F is continuous on [a, b]
- ii) If f is continuous at $x_0 \in [a, b]$, then F is differentiable at x_0 and $F'(x_0) = f(x_0)$
- b) If f maps [a, b] into \mathbb{R}^k and if $f \in R(\alpha)$ for some monotonically increasing function α on [a, b], prove that $|f| \in R(\alpha)$ and $\left|\int\limits_a^b f \,d\alpha\right| \leq \int\limits_a^b |f| \,d\alpha$.
- 14. a) Let f be of bounded variation on [a, b] and C ∈ (a,b) prove that f is of bounded variation on [a, c] and on [c, b] and that V_f (a, b) = V_f(a, c) + V_f (c, b).
 - b) Let f be defined on [a, b]. Prove that f is of bounded variation on [a, b] if and only if f can be expressed on the difference of two increasing functions.
- 15. a) Define a path in IRⁿ. When it is said to be rectifiable? With usual notations show that

$$\Lambda_f(a,b) = \Lambda_f(a,c) + \Lambda_f(c,b)$$
 if $c \in (a,b)$.

- b) Let f: [a, b] → IRⁿ be a path with components f = (f₁, f₂,, f_n). Prove that f is rectifiable if and only if each components f_k is of bounded variation on [a, b].
- c) Let f be defined by $f(t) = e^{2\pi it}$, $0 \le t \le 1$. Find the length of f.