Reg. No.:

Name :

I Semester M.A./M.Sc./M.Com. Degree (Regular/Supplementary/ Improvement) Examination, November 2014 (2014 Admission – under CBSS) MATHEMATICS

MAT 1C05 : Differential Equations

Time: 3 Hours

) Brit eveng $(x)_{x,y}$, "x = (x) dx" $x = \frac{tx}{x}$ bos $(x)_{x,y}$, " $x = (x)_{x}$ (x)

Max. Marks: 60

PART - A

Answer four questions from this Part. Each question carries 3 marks.

- 1. Show that the equation $4x^2y'' 8x^2y' + (4x^2 + 1)y = 0$ has only one Frobenius series solution.
- 2. For the equation y' = y, find a power series solution of the form $\sum a_n x^n$.
- 3. Show that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$.
- 4. Show that $x = e^{4t}$, $y = e^{4t}$ and $x = e^{-2t}$, $y = -e^{-2t}$ are two solutions of the system. $\frac{dx}{dt} = x + 3y$, $\frac{dy}{dt} = 3x + y$. Also find the particular solution of this system for which x(0) = 5 and y(0) = 1.
- 5. Find the critical points of the equation $\frac{d^2x}{dt^2} + \frac{c}{m} \cdot \frac{dx}{dt} + \frac{g}{a} \sin x = 0$ (The equation of motion for the damped vibrations of a pendulum of length a whose bob has mass m).
- 6. Does the initial value problem $y' = 3 y^{2/3}$, y(0) = 0 has a unique solution in the interval |x| < 1? Explain why or why not.

P.T.O.

PART-B

Answer any four questions from this Part without omitting any unit. Each question carries 12 marks.

UNIT-1

- 7. a) Express $\sin^{-1} x$ in the form of a power series $\sum a_n x^n$ by solving $y' = (1 x^2)^{-\frac{1}{2}}$ in two ways.
 - b) Find the general solution of (1 - x²) y" - 2xy' + p(p+1)y = 0 in terms of power series in x where p is a constant.
- 8. a) Show that the indicial equation of $x^2y'' + xy' + x^2y = 0$ has only root and deduce that $y = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n} (n!)^2} x^{2n}$ is the corresponding Frobenius series solution.
 - b) Find two independent Frobenius series solutions of xy'' + 2y' + xy = 0.
- a) Define hypergeometric series and derive this series as a solution of Gauss's hypergeometric equation.
 - b) Show that

i)
$$F'(a, b, c, x) = \frac{ab}{c} F(a + 1, b + 1, c + 1, x)$$

ii)
$$e^x = \lim_{b \to \infty} F(a, b, a, \frac{x}{b}).$$

UNIT - I

- a) Establish the orthogonality property of the Legendre polynomials.
 - b) Find the first three terms of the Legendre series of $f(x) = e^x$.

- 11. a) Show that $\frac{d}{dx}[x^{P}J_{P}(x)] = x J_{P-1}(x)$.
 - b) Show that $J_m(x)$ and $J_{-m}(x)$ are linearly dependent when $m \ge 0$ is an integer.
 - c) Assuming the formulas

$$\begin{split} &\frac{d}{dx} \Big[x^P J_P(x) \Big] = x^P \ J_{P-1}(x) \ \text{and} \ \frac{d}{dx} \Big[x^{-P} J_P(x) \Big] = -x^{-P} \ J_{P+1}(x) \,, \text{ prove that} \\ &\frac{2P}{x} J_P(x) = J_{P-1}(x) + J_{P+1}(x) \,. \text{ Also express } J_4(x) \text{ interms of } J_0(x) \text{ and } J_1(x). \end{split}$$

- 12. a) If $x = x_1(t)$, $y = y_1(t)$ and $x = x_2(t)$, $y = y_2(t)$ are two linearly independent solutions on [a, b] of the system $\frac{dx}{dt} = a, x + b, y, \frac{dy}{dt} = a_2x + b_2y$, then prove that the general solution of the system on [a, b] is $x = c_1 x_1(t) + c_2x_2(t)$, $y = c_1 y_1(t) + c_2y_2(t)$ for any constants c_1 and c_2 .
 - b) Solve the system $\frac{dx}{dt} = x + y$, $\frac{dy}{dt} = 4x 2y$.

- 13. a) If the roots of the auxiliary equation of the system $\frac{dx}{dt} = a_{\uparrow}x + b_{\uparrow}y$,
 - $\frac{dy}{dt} = a_2x + b_2y$ where $a_1b_2 a_2b_1 \neq 0$ are real, distinct and of the same sign, then prove that the critical point (0, 0) is a node.
 - b) Determine the nature and stability properties of the critical point (0, 0) for the system $\frac{dx}{dt} = -4x y$, $\frac{dy}{dt} = x 2y$.
- 14. a) Show that (0, 0) is an asymptotically stable critical point for the system $\frac{dx}{dt} = -3x^3 y \; , \; \frac{dy}{dt} = x^5 2y^3 \; .$
 - b) Find the exact solution of y' = x + y, y(0) = 1. Starting with $y_0(x) = 1$, apply Picardi method to calculate $y_1(x)$, $y_2(x)$, $y_3(x)$ and show that $y_n(x)$ converge to the exact solution.
- 15.a) Let f(x, y) be a continuous function that satisfies a Lipschitz condition $|f(x, y) f(x, y_2)| \le k |y_1 y_2|$ on a strip $a \le x \le b$; $-\infty < y < \infty$. If (x_0, y_0) is any point of the strip, prove that y' = f(x, y), $y(x_0) = y_0$ has exactly one solution y = y(x) on the interval $a \le x \le b$.
 - b) For what points (x_0, y_0) does the initial value problem $y' = |y|, y(x_0) = y_0$ has a unique solution on some interval $|x x_0| \le h$? Give reason.