TOTAL BUT AND BUT THE FO

GOOT VALUERGEN STOOM

K20U 1831

Reg. No. :	Reg. No
Name :	Name :

III Semester B.Sc. Degree CBCSS (OBE) – Regular Examination, November 2020 (2019 Admission Only)

CORE COURSE IN MATHEMATICS

3B03 MAT : Analytic Geometry and Applications of Derivatives

Time: 3 Hours

Max. Marks: 48

PART - A

Answer any four questions. Each question carries one mark.

- 1. Find the focus of the parabola $y^2 = 12x$.
- 2. Find all points of intersection of $x^2 = 4y$ and $y^2 = 4x$.
- 3. Let $f(x) = |x^3 9x|$. Does f'(3) exists ?
- 4. Define radius of curvature of a curve at any point.
- 5. Find the length of the perpendicular from (0, 0) on the line $x \tan t + y a \sin t = 0$ where t is a parameter. (4×1=4)

PART - B

Answer any eight questions. Each question carries two marks.

- 6. Identify the conic $r = \frac{4}{2 2\cos\theta}$.
- 7. Find the polar equation for the circle $(x 6)^2 + y^2 = 36$.
- 8. Verify the Lagrange's theorem for the function $f(x) = e^x$ in [0, 1].
- 9. Find the asymptotes of $(x^2 a^2)(y^2 b^2) = a^2b^2$.
- 10. Find the angle of intersection of the curves $x^2 = 4y$ and $y^2 = 4x$ at (4, 4).

P.T.O.

- PART D

K20U 1831

Answer any two questions. Each question carries 6 marks.

- 24. Find the Cartesian equation for the hyperbola centered at the origin that has focus at (3, 0) and the line x = 1 as the corresponding directrix. Sketch the graph.
- 25. Find the lengths of the tangent, normal, subtangent and subnormal for the cycloid x = a(1 + sint), y = a(1 - cost).
- 26. Find the coordinates of the centre of curvature at any point of the parabola $y^2 = 4ax$. Hence show that its evolute is $27ay^2 = 4(x - 2a)^3$.
- 27. Sketch the graph of $f(x) = \frac{(x+1)^2}{1+x^2}$. $(2 \times 6 = 12)$

11. Evaluate $\lim_{x\to 2} \frac{x-2}{x^2-4}$.

- 12. Find the absolute maximum value of the function $f(x) = x^2 1$, $-1 \le x \le 2$.
- 13. Expand sin x in powers of $x \pi$.
- 14. Find the radius of curvature p at the origin for the curves $y^4 + x^3 + a(x^2 + y^2) - a^2y = 0.$
- 15. Prove that if f has a local maximum value at an interior point c of its domain and if f'(c) is defined at c, then f'(c) = 0.
- 16. For the cardioid, $r = a(1 \cos\theta)$, prove that length of polar subtangent is

$$2a \sin^2 \frac{\theta}{2} \tan \frac{\theta}{2}$$
 (8×2=16)

PART - C

Answer any four questions. Each question carries four marks.

- 17. What is an ellipse ? Find its standard form equations centered at the origin.
- 18. Find the polar equation in the form $r \cos(\theta \theta_0) = r_0$ of the line $\sqrt{2}x + \sqrt{2}y = 6$.
- 19. Find the equation of the tangent line of the curve y(x-2)(x-3) x + 7 = 0 at the point where it cuts the x-axis.
- 20. Prove that the curves $r = a(1 + \cos\theta)$ and $r = a(1 \cos\theta)$ intersects at right angle.
- 21. Show that the sum of the intercepts on the axes of any tangent to the curve $\sqrt{x} + \sqrt{y} = a$ is a constant.
- 22. Find the critical point of $f(x) = x^{\frac{1}{3}}(x-4)$. Identify the interval on which f is increasing and decreasing.
- 23. If f(x) = log(1 + x), x > 0 using Maclaurin's theorem, show that for $0 < \theta < 1$

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3(1+\theta x)^3}.$$
 (4x4=16)