

K20U 1288

Reg. No. :

III Semester B.Sc. Degree (CBCSS – Sup.)

Examination, November 2020

(2014 – '16 Admns)

Core Course in Mathematics

3B03 MAT : ELEMENTS OF MATHEMATICS – I

Time: 3 Hours Max. Marks: 48

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Write the negation of $\forall y \exists x (p(x) \land \neg q(y))$.
- 2. Give an example to show that $a^2 \equiv b^2 \pmod{n}$ need not implies that $a \equiv b \pmod{n}$.
- 3. State Newton's theorem on the sum of the powers of roots.
- 4. State fundamental theorem of algebra.

SECTION - B

Answer any 8 questions from among the 5 to 14. These questions carry 2 marks each.

- 5. Show that the set \mathbb{Z} of all integers is denumerable.
- 6. Use De Morgan's Law, find the negation of Rahul likes apple and orange.
- 7. Find the polynomial equation of the lowest degree with rational coefficients having 3 and 1 2i as two of its roots.
- 8. If α , β , γ , δ are the roots of the equation $x^4 + ax^3 + bx^2 + cx + d = 0$, find the value of $\Sigma \alpha^2$.
- 9. Find the equation whose roots are two less than the roots of the equation $x^4 5x^3 + 7x^2 17x + 11 = 0$.

K20U 1288

- 10. Show that $x^{2n} = 10$ has (2n 2) complex roots.
- 11. Find the sum of $\cos(a) + \cos(a + b) + \cos(a + 2b) + \dots + \cos(a + (n-1)b)$.
- 12. Prove that if a/bc with gcd(a, b) = 1, then a/c.
- 13. Find the remainder when $1! + 2! + \ldots + 100!$ is divisible by 12.
- 14. If p is a prime and p/ab, then p/a or p/b.

SECTION - C

Answer any 4 questions from among the 15 to 20. These questions carry 4 marks each.

- 15. Suppose that S and T are sets and that $T \subseteq S$ then prove that
 - i) Suppose S is a finite set, then T is a finite set.
 - ii) If T is an infinite set, then S is an infinite set.
- 16. Show that the equation $x^3 + qx + r = 0$ has two equal roots if $27r^2 + 4q^3 = 0$.
- 17. Solve $6x^5 + 11x^4 33x^3 33x^2 + 11x + 6 = 0$.
- 18. Solve $x^5 x^4 4x^2 + 7x 3 = 0$, given that it has multiple roots.
- 19. State and prove Cantor's theorem.
- 20. Show that cube of any integer is of the form 7k or $7k \pm 1$.

SECTION - D

Answer any 2 questions from among the 21 to 24. These questions carry 6 marks each.

- Prove (i) There are infinitely many prime numbers. (ii) The product of any two odd integers is odd.
- 22. Prove that the sum of r^{th} powers of the roots of the equation f(x) = 0 is the coefficient of x^{-r} in the expansion of $\frac{xf'(x)}{f(x)}$ in descending powers of x.
- 23. Solve $x^3 + x^2 16x + 20 = 0$ by Cardan's method.
- 24. Using Euclidean algorithm, find gcd(12378, 3054) and express it as a linear combination of the two integers.