When this, in divided by x = 1 and x = 2, the minimum are 4 and -2 resulted the remainder when the in-divided by $x^2 + x - 2$.

Solve the equation $x^4 - 2x^2 + 4x^2 + 6x - 21 = 0$, given that two of its room are

contain magnitude and opposed in order and the number of imaginary mots.

Deliver - School and the Control of the Control of

30. Election solutions in positive integers to the Diophantine equation

(8) = 1000.

Answersens 2 questions from among the questions 21 to 24. These questions carry . 5 marks: ouet.

21 a) Show that a countrible union of countrible sets is countrible.

by Prove that the collection of by of all finite subsets of this countable.

18 - 3 - x 25 - x 32 - x 32 - x 32 - x 32 x - 8 - 0.

W. Show that the equation 125° - 2° - 105° - 20 = 0 has allocal four imaginary

.24. Given integers a rend by not both of whoth are zero, show that there exist integer

x and y sinh that, god(h.b) = ax - oy. (2x6=1

Reg. No. :

Name :

SOLT BREW

K16U 2110

Third Semester B.Sc. Degree (CBCSS - Reg./Supple./Imp.)

Examination, November 2016 (2014 Admn. Onwards) CORE COURSE IN MATHEMATICS

3B03 MAT : Elements of Mathematics - I

Time: 3 Hours

Max. Marks: 48

SECTION-A

All the first 4 questions are compulsory. These questions carry 1 mark each.

- 1. Determine the number of different surjections from {a, b, c} onto {1, 2}.
- 2. Form an equation whose roots are the negatives of the roots of the equation, $x^4 4x^3 + 6x^2 x + 2 = 0$.
- 3. State Sturm's theorem.
- 4. State the Fundamental Theorem of Arithmetic.

 $(4 \times 1 = 4)$

SECTION-B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- 5. Give a contrapositive proof for the following theorem.

 If n is an integer and n² is even, then n is even.
- 6. Determine the truth value of the statement, $\forall x \left(x > 0 \rightarrow \exists y \left(\frac{\sqrt{x}}{y} = 3\right)\right)$, if the universe of each variable consists of all integers.

- 7. If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $\sum \alpha^2 \beta$.
- 8. If α , β , γ are the roots of the equation $x^3-6x+7=0$, form an equation whose roots are, $\alpha^2+2\alpha+3$, $\beta^2+2\beta+3$, $\gamma^2+2\gamma+3$.
- 9. Solve the equation, $x^4 5x^3 + 4x^2 + 8x 8 = 0$, given that one of the root is $1 \sqrt{5}$.
- 10. Find the values of 'a' for which the equation, $ax^3 9x^2 + 12x 5 = 0$ has equal roots.
- 11. Find the sum of the trigonometric series, $\sin x + \sin 2x + \sin 3x + \dots$
- 12. Show that 41 divides 220 1.
- 13. If p is a prime and $p|a_1a_2\dots a_n$, then show that $p|a_k$ for some k, where $1 \le k \le n$.
- 14. If $ca \equiv cb \pmod{n}$, show that $a \equiv b \pmod{n/d}$, where d = gcd(c, n). (8x2=16)

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- Suppose the variable x represents students and y represents courses. Consider the following propositional functions.
 - C(y) = y is a computer science course.
 - F(x) = x is a freshman.

T(x, y) = student x is taking y.

Write each of the following statements using the above propositional functions and any needed quantifiers and logical operators.

- a) Bob is a freshman.
- b) Every student is taking atleast one course.
- c) Charlie is not taking any courses.
- d) Every freshman is taking a non-computer science course.

- 16. When f(x) is divided by x-1 and x+2, the remainders are 4 and -2 respectively. Find the remainder when f(x) is divided by $x^2 + x 2$.
- 17. Solve the equation, $x^4 2x^3 + 4x^2 + 6x 21 = 0$, given that two of its roots are equal in magnitude and opposite in sign.
- 18. Find the number and position of the real roots and the number of imaginary roots of the equation $x^5 5x + 1 = 0$.
- 19. For $n \ge 1$, show that there are at least n + 1 primes less than 2^{2n} .
- 20. Find the solutions in positive integers to the Diophantine equation 172x + 20y = 1000. (4×4=16)

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- 21. a) Show that a countable union of countable sets is countable.
 - b) Prove that the collection $\mathcal{F}(\mathbb{N})$ of all finite subsets of \mathbb{N} is countable.
- 22. Solve the equation, $6x^6 35x^5 + 56x^4 56x^2 + 35x 6 = 0$.
- 23. a) Solve the cubic, $x^3 18x 35 = 0$ by Cardon's method.
 - b) Show that the equation, $12x^7 x^4 + 10x^3 28 = 0$ has atleast four imaginary roots.
- 24. Given integers a and b, not both of which are zero, show that there exist integers x and y such that, gcd(a,b) = ax + by. (2x6=12)