21. Decide that the following standards are equivalent.

b) There exists a surjection of N onto S.

c) There exists an injection of S into N.

22. Find $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{x}$ where α , β , are the note of the equation $x^2 + 2x^2 - 3x - 1 = 0$.

23. Solve $x^2 - 3x^2 - 6x - 2 = 0$.

24. a) Show that the number $\sqrt{2}$ is instional.

25. Show that the number $\sqrt{2}$ is instional.

K17U 1968

Reg. No. :

K17U 1968

Third Semester B.Sc. Degree (CBCSS – Reg./Sup./Imp.) Examination,
November 2017

CORE COURSE IN MATHEMATICS
(2014 Admn. Onwards)

3B03 MAT : Elements of Mathematics - I

Time: 3 Hours Max. Marks: 48

SECTION-A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Give an example of a countable collection of finite sets whose union is not finite.
- 2. Find the sum of the cubes of the roots of the equation $x^4 + 2x + 3 = 0$.
- 3. State the fundamental theorem of algebra.
- 4. Give a prime number of the form $n^3 1$.

 $(4 \times 1 = 4)$

SECTION-B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- 5. If A_m is a countable set for each $m \in \mathbb{N}$, show that $\bigcup_{m=1}^{\infty} A_m$ is countable.
- 6. Show that $\neg (p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.
- 7. If α , β , γ , δ are the roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$, find the value of $\sum \alpha^3 \beta$.
- 8. Find the condition that the roots of the equation $ax^3 + 3bx^2 + 3cx + d = 0$ may be in geometric progression.

K17U 1968

- 9. Solve the equation $x^3 6x^2 + 13x 10 = 0$, given that the roots are in arithmetic progression.
- 10. Find the value of k for which $x^3 + 4x^2 + 5x + 2 + k = 0$ has equal roots.
- 11. Find the condition that all the roots of the equation, $x^3 + px + q = 0$ may be real.
- 12. Prove that $3a^2 1$ is never a perfect square.
- 13. Prove that the difference of two consecutive cubes is never divisible by 2.
- 14. Prove or disprove : Every positive integer can be written in the form $p + a^2$, where p is either a prime or 1 and $a \ge 0$. (8x2=16)

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- 15. Let C(x): x has a cat, D(x): x has a dog and let F(x): x has a ferret. Express the following statements in terms of C(x), D(x), F(x), quantifiers and logical operators. Let the domain consist of all students in your class.
 - a) A student in your class has a cat, a dog and a ferret.
 - b) All students in your class have a cat, a dog or a ferret.
 - c) Some student in your class has a cat and a ferret, but not a dog.
 - d) No student in your class has a cat, a dog and a ferret.
- 16. If the sum of two roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$ equals the sum of the other two, prove that $p^3 + 8r = 4pq$.
- 17. If α , β , γ be the roots of the equation $x^3 6x + 7 = 0$, form an equation whose roots are $\alpha^2 + 2\alpha + 3$, $\beta^2 + 2\beta + 3$, $\gamma^2 + 2\gamma + 3$.
- 18. Find the sum of the trigonometric series, $\sin \alpha + \frac{1}{2}\sin 2\alpha + \frac{1}{2^2}\sin 3\alpha + ...$
- 19. Determine all solutions in the integers of the Diophantine equation, 56x + 72y = 40.
- 20. Find the remainder when 41⁶⁵ is divided by 7. (4×4=16)

K17U 1968

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- 21. Show that the following statements are equivalent:
 - a) S is a countable set.
 - b) There exists a surjection of N onto S.
 - c) There exists an injection of S into N.
- 22. Find $\frac{1}{\alpha^5} + \frac{1}{\beta^5} + \frac{1}{\gamma^5}$ where α , β , γ are the roots of the equation $x^3 + 2x^2 3x 1 = 0$.
- 23. Solve: $x^4 3x^2 6x 2 = 0$.
- 24. a) Show that the number $\sqrt{2}$ is irrational.
 - b) Give an example to show that $a^2 \equiv b^2 \pmod{n}$ need not imply $a \equiv b \pmod{n}$. (2x6=12)