INDIDENTIFIED	SHEET.	mit	min	1901	100
188 880 68	81188	411	1111	188	ш
	21183	1112	1111	ш	38

M 6329

Reg. No.:

Name :

IV Semester B.Sc. Degree (CCSS – Regular/Supple./Improv.)

Examination, May 2014

COMPLEMENTARY COURSE IN MATHEMATICS

4 C04 MAT: Numerical Analysis and Vector Calculus

Γime: 3 Hours	The following (Whitgottage 2 each)	Max. Weightage: 30
1. Fill in the blanks :		
a) If the direction of	\vec{u} is constant, then $\vec{u} \times \frac{d\vec{u}}{dt} = $	
b) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then curl r =	
c) A vector \vec{f} is said	to be solenoidal if	
	ux of a three dimensional vector field F	across an oriented (Weightage 1)

Answer any six from the following (Weightage 1 each):

- 2. Using Newton-Raphson method, find the square root of 2.
- 3. What do you mean by interpolation? State Newton's forward interpolation formula.
- 4. Apply Euler's method to solve the initial value problem y' = x + y, y(0) = 0 to find y(0.2) and y(0.4). Take h = 0.2.
- 5. Find by Taylor's series method the value of y at x = 0.1 from $\frac{dy}{dx} = x^2 y 1$, y(0) = 1.
- A particle is moving along a curve x = e^t, y = 2 cos 3t, z = 2 sin 3t, where t is the time variable? Determine the velocity and acceleration at t = 0.
- 7. Find the gradient of f(x, y) = y x at the point (2, 1).

- 8. Show that $\vec{f} = 2xye^z\hat{i} + x^2e^z\hat{j} + x^2ye^z\hat{k}$ is irrotational.
- 9. If $\vec{F} = 3xy\hat{i} y^2\hat{j}$, evaluate $\int_{\vec{F}} \vec{F} \cdot d\vec{r}$ where C is the curve in the xy-plane, $y = 2x^2$ from (0, 0) to (1, 2).
- 10. State Green's theorem in plane.

(Weightage 6x1=6)

Answer any seven form the following. (Weightage 2 each)

- 11. Using Gauss elimination method, solve the equations x + 4y z = -5; x + y 6z = -12; 3x y z = 4.
- 12. Using matrix inversion method, solve the equations 2x + y + z = 10; 3x + 2y + 3z = 18; x + 4y + 9z = 16.
- 13. Using trapezoidal rule evaluate $\int_{0}^{1} e^{-x^{2}} dx$ by dividing the interval into 10 sub-intervals.
- 14. Solve the differential equation $\frac{dy}{dx} = \log(x + y)$, y(0) = 2 at x = 1.2 using Euler's modified method.
- 15. Using Picard's process of successive approximation, obtain the value of y at x = 0.4 from the equation $\frac{dy}{dx} = x^2 + y^2$, y(0) = 0.
- 16. If $\vec{A} = 5t^2\hat{i} + t\hat{j} + t^3\hat{k}$ and $\vec{B} = \sin t\hat{i} \cos t\hat{j}$, find $\frac{d}{dt}(\vec{A} \cdot \vec{B}), \frac{d}{dt}(\vec{A} \times \vec{B})$ and $\frac{d}{dt}(\vec{A} \cdot \vec{A})$.
- 17. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$, prove that $\nabla^2 r^n = n(n+1) r^{n-2}$.
- 18. If \vec{a} is a constant vector and $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, show that $\nabla \times (\vec{a} \times \vec{r}) = 2\vec{a}$.

- 19. Find the work done in moving a particle one round the circle $x^2 + y^2 = 9$ in the xy-plane if the field of force is $\vec{f} = (2x y z)\hat{i} + (x + y z^2)\hat{j} + (3x 2y + 4z)\hat{k}$.
- 20. Evaluate $\iint_{\hat{S}} \vec{f} \cdot d\vec{s}$ where $\vec{F} = 4x \hat{i} 2y^2 \hat{j} + z^2 \hat{k}$ and S is the surface bounding the region $x^2 + y^2 = 4$, z = 0 and z = 3. (Weightage 7×2=14)

Answer any three from the following (Weightage 3 each).

21. Given that the values

x : 5 7 11 13 17

f(x): 150 392 1452 2366 5202

Evaluate f(9) using Lagrange's interpolation formula.

- 22. Using Runge-Kutta method of fourth order, find an approximate value of y for x = 0.2 in steps of 0.1, if $\frac{dy}{dx} = x + y^2$, given that y = 1, where x = 0.
- 23. a) If \vec{f} is a differential vector function and ϕ is a differential scalar function, then prove that $\nabla \cdot (\phi \vec{f}) = (\nabla \phi) \cdot \vec{f} + \phi (\nabla \cdot \vec{f})$.
 - b) If F is solenoidal, find curl curl curl curl F.
- 24. A vector field is given by $\vec{F} = (x^2 y^2 + x)\hat{i} (2xy + y)\hat{j}$. Show that the filed is irrotational and find its scalar potential.
- 25. Verify Stoke's theorem for the function $\vec{F} = (x^2 + y^2) \hat{i} 2xy \hat{j}$ integrated round the rectangle in the plane z = 0 whose sides are along the lines x = a, x = -a, y = 0 and y = 6. (Weightage 3×3=9)