	DESCRIPTION OF	1191	19030	300	19.1	ш	THE .	18
-1	Ш	1186	88	ш	ш	ш	ш	н
-1	488	ш	ш	ш	ш	ш	ш	ш

M 8564

Name:

IV Semester B.Sc. Degree (CCSS-Reg./Supple./Imp.)

COMPLEMENTARY COURSE IN MAT 4C04 MAT : Numerical Analysis and Ve	
Time: 3 Hours	Max. Weightage: 30
1. Fill in the blanks :	
a) If the magnitude of \vec{u} is constant, then $\vec{u} \cdot \frac{d\vec{u}}{dt} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	
b) Tangent vector in the direction of r is	The investment may be able
c) A vector point function \vec{f} is said to be irrotational if _	E-E-L-St-y-S
d) If \vec{F} is a conservative field in a region D, then the va	lue of ∫ F̄ · dr̄ around
every closed loop in D is	(Weightage 1
Answer any six from the following:	(Weightage 1 each
2. Using Newton-Raphson method, find the positive solution	ion of $2 \sin x = x$.

- 3. What do you mean by backward differences ? State Newton's backward interpolation formula.
- 4. Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with initial condition y = 1 at x = 0; find y for x = 0.02 and x = 0.04 by Euler's method.
- 5. Find by Taylor's series method the value of y at x = 0.2 for the differential equation $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 0.

- 6. A particle moves along the curve $\hat{f} = (t^3 4t) \hat{i} + (t^2 + 4t) \hat{j} + (8t^2 3t^3) \hat{k}$ where t denotes the time. Find the velocity and acceleration at t = 2.
- 7. Find the gradient of $f(x, y) = 2x + y^2 3$ at the point (1, 1).
- 8. Find the value of a so that the vector $\vec{f} = (x+3y)\hat{i} + (y-2z)\hat{j} + (x+ax)\hat{k}$ is
- 9. Find the circulation of the field $\vec{F} = y\hat{i} + z\hat{j} + x\hat{k}$ around the circle $x^2 + y^2 = 1$, z = 0.
- 10. State Stoke's theorem.

(Weightage 6×1=6)

Answer any seven from the following: (Weightage 2 each)

- 11. Using Gauss elimination method, solve the equations 2x + y + z = 10; 3x + 2y + 3z = 18; x + 4y + 9z = 16.
- 12. Using matrix inversion method, solve the equations 3x + y + 2z = 3; 2x - 3y - z = -3; x + 2y + z = 4.
- 13. Using Simpson's rule evaluate $\int_{-\infty}^{\infty} \frac{dx}{x}$ by dividing the interval into 10 sub-intervals.
- 14. Solve the differential equation $\frac{dy}{dx} = x + \left| \sqrt{y} \right|$, y(0) = 1 at x = 0.2 using Euler's modified method.
- 15. Using Picard's process of successive approximation, obtain the value of y(0.1) from the equation $\frac{dy}{dx} = x - y^2$, y(0) = 1.
- 16. If \vec{F} is a vector function of the scalar variable t, show that $\frac{d}{dt} \left[\vec{F} \vec{F}' \vec{F}'' \right] = \left[\vec{F} \vec{F}' \vec{F}'' \right]$
- 17. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$, prove that $\nabla r^n = nr^{n-2}\vec{r}$.
- 18. If $u = x^2 + y^2 + z^2$ and $\vec{v} = x\hat{i} + y\hat{j} + z\hat{k}$, show that div $(u \ \vec{v}) = 5u$.

- 19. Find the work done by $\vec{F} = (2y + 3)\hat{i} + xz\hat{j} + (yz x)\hat{k}$ when it moves a particle from the point (0, 0, 0) to the point (2, 1, 1) along the curve $x = 2t^2$, y = t, $z = t^3$.
- 20. Apply Green's theorem to evaluate $\int [(2x^2 y^2) dx + (x^2 + y^2) dy]$, where C is the boundary of the area enclosed by the x-axis and the upper half of the circle $x^2 + y^2 = a^2$. (Weightage 7×2=14)

Answer any three from the following:

(Weightage 3 each)

21. Given that the values

17 13 11 5202 2366

f(x): Evaluate f(9) using Newton's divided difference formula.

1452

- 22. Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = x + y$ with y = 0, where x = 0 at x = 0.2 and x = 0.4.
- 23. a) If f is a differential vector function and o is a differential scalar function, then prove that $\nabla \times (\phi \vec{f}) = (\nabla \phi) \times \vec{f} + \phi (\nabla \times \vec{f})$.
 - b) If u is a scalar point functions, prove that u V u is irrotational.
- 24. A fluid motion is given by $\vec{V} = (y+z)\hat{i} + (z+x)\hat{j} + (x+y)\hat{k}$. Is the motion irrotational? If so, find the velocity potential.
- 25. Verify divergence theorem for $\vec{F} = (x^2 yz)\hat{i} + (y^2 zx)\hat{j} + (z^2 xy)\hat{k}$ over the rectangular parallelopiped, $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$. (Weightage 3x3=9)