College of 25% in the Newton's Service Service of the proposition from the

Reg. No. :

Name :

K16U 0515

IV Semester B.Sc. Degree (CCSS-Supple./Imp.)
Examination, May 2016
COMPLEMENTARY COURSE IN MATHEMATICS
CO4 MAT : Numerical Analysis and Vector Calculus (2013 & Earlier Admissions)

COMPLEMENTARY COURSE IN 4C04 MAT : Numerical Analysis an (2013 & Earlier Admiss	d Vector Calculus
Time: 3 Hours	Max. Weightage: 30
1. Fill in the blanks:	
a) If the vector function $\vec{u}(t)$ is constant, then $\frac{d\vec{u}}{dt}$	elus lebinoaquat poleti Er
b) If ϕ is a surface, then normal to the surface is _	
c) A vector point function f is said to form a cons	ervative field if
d) If \vec{f} is a conservative field and there exist a sc	alar function of such that
$\vec{f} = \nabla \phi$, then ϕ is known as of \vec{f} .	(Weightage 1)
Answer any six from the following.	(Weightage 1 each)
2. Using Newton-Raphson method, find a positive so	olution of $x^3 + x - 1 = 0$.
What do you mean by divided differences? State interpolation formula.	e Newton's divided difference
 Apply Euler's method to solve the initial value prob y(0, 1) and y(0, 2). Take h = 0.1. 	olem $y' = x + y$, $y(0) = 0$ to find
5. Solve $y' = y^2 + x$, $y(0) = 1$ using Taylor's series m	nethod and compute y(0. 1).
6. Find the angle between the tangents to the curve points $t = \pm 1$.	
7. If $f(x, y, z) = x^2 + y^2 - 2z^2$, find ∇f at the point (1)	1, 1, 1).
8. Find the values of the constants a, b, c so that	
$\vec{f} = (axy + bz^3)\hat{i} + (3x^2 - cz)\hat{j} + (3xz^2 - y)\hat{k}$ may be	e irrotational.
	P.T.O.

- 9. If $\vec{F} = (3x^2 + 6y)\hat{i} 14yz\hat{j} + 20xz^2\hat{k}$, evaluate $\int_C \vec{F} \cdot d\vec{r}$ from (0, 0, 0) to (1, 1, 1) along the path x = t, $y = t^2$, $z = t^3$.
- 10. State Divergence theorem.

(Weightage 6×1=6)

Answer any seven from the following.

(Weightage 2 each)

- 11. Using Gauss elimination method, solve the equations 2x + 2y + z = 12; 3x + 2y + 2z = 8; 5x + 10y 8z = 10.
- 12. Using matrix inversion method, solve the equations 3x y + z = 6; 4x y + 2z = 7; 2x y + z = 4.
- 13. Using trapezoidal rule evaluate $\int_0^6 \frac{dx}{1+x^2}$ by dividing the interval into 6 sub-intervals.
- 14. Apply Euler's modified method to solve the initial value problem y' = x + y, y(0) = 1 to find y(0, 1).
- 15. Using Picard's method find approximate solution to the initial value problem $y' = 1 + y^2$, y(0) = 0.
- 16. If \vec{F} is a vector function of the scalar variable t, show that $\frac{d}{dt} [\vec{F} \vec{F}' \vec{F}''] = [\vec{F} \vec{F}' \vec{F}'']$.
- 17. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$, prove that div (grad r^n) = $n(n + 1) r^{n-2}$.
- 18. If u and v are scalar point functions and \vec{F} is a vector point function such that $u\vec{F} = \nabla v$, prove that \vec{F} . curl $\vec{F} = 0$.
- 19. Find the work done in moving a particle if the force field $\vec{f} = 3x^2\hat{i} + (2xz y)\hat{j} + z\hat{k}$ along the curve defined by $x^2 = 4y$, $3x^3 = 8z$ from x = 0 to x = 2.
- 20. If C is a simple closed curve and $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, prove that $\int_C \vec{r} \cdot d\vec{r} = 0$.

(Weightage 7×2=14)

Answer any three from the following.

(Weightage 3 each)

21. Given that the values

x: 20 25 30 35 40 45

Evaluate f (22) using Newton's forward interpolation formula.

- 22. Using Runge-Kutta method of fourth order, find an approximate value of y(0.1) and y(0.2) from 10 $\frac{dy}{dx} = x^2 + y^2$, given that y(0) = 1, taking h = 0.1.
- 23. a) If \vec{f} and \vec{g} are two differential vector functions, then prove that $\nabla \cdot (\vec{f} \times \vec{g}) = \vec{g} \cdot (\nabla \times \vec{f}) \vec{f} \cdot (\nabla \times \vec{g})$.
 - b) If \vec{u} and \vec{v} are irrotational, prove that $\vec{u} \times \vec{v}$ is solenoidal.
- 24. A vector field is given by $\vec{F} = (x^2 y^2 + x)\hat{i} (2xy + y)\hat{j}$. Show that the field is irrotational and find its scalar potential.
- 25. Verify Green's theorem in the plane for $\int_C (xy + y^2) dx + x^2 dy$ where C is the curve enclosing the region bounded by the parabola $y = x^2$ and the line y = x. (Weightage $3 \times 3 = 9$)