Reg. No. :

Name :

K16U 0623

IV Semester B.Sc. Degree (CBCSS – 2014 Admn.-Regular)

Examination, May 2016

COMPLEMENTARY COURSE IN MATHEMATICS

4C04MAT – CH : Mathematics for Chemistry – IV

Time: 3 Hours Max. Marks: 40

SECTION-A

All the first 4 questions are compulsory. They carry 1 mark each.

- Show that the derivative of a vector function v(t) of constant length is either the zero vector or is perpendicular to v(t).
- 2. Show that the integral $\int_{c}^{F} dr = \int_{c}^{(2xdx+2ydy+4zdz)}$ is path independent in any domain in space.
- 3. Give the Newton's backward difference interpolation formula.
- 4. What do you mean by numerical integration?

 $(4 \times 1 = 4)$

SECTION-B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. Find the tangent to the curve C: $r(t) = [3 \cos t, 3 \sin t, 4t]$ at the point P: $(3, 0, 8\pi)$.
- 6. Find the directional derivative of $f(x, y, z) = x^2 + y^2 + z^2$ at P: (2, -2, 1) in the direction of a = [-1, -1, 0].
- 7. If f(x, y, z) is a twice differentiable scalar function, show that $div(grad f) = \nabla^2 f$.

K16U 0623

- 8. Calculate $\int_C F(r) \cdot dr$ where $F = [y^3, x^3]$, C the parabola $y = 5x^2$ from (0, 0) to (2, 20).
- 9. Let C be the positively-oriented boundary of the region enclosed by the parabolas $y = x^2$ and $x = y^2$. Use Green's Theorem to evaluate $\int_{C} (y+e^{\sqrt{x}}) dx + (2x+\cos y^2) dy.$
- 10. Obtain Green's theorem in the plane as a special case of Stoke's theorem.
- 11. Using Newton-Raphson method find a real root, correct to 3 decimal places, of the equation $\sin x = x/2$, given that the root lies between $\pi/2$ and π .
- Given the differential equation, y'=-y with the initial condition y(0) = 1, find y(0.04), by Euler's method.
- 13. Solve the equation $y'=x+y^2$, subject to the condition y=1 when x=0, by Picard's method. (7x2=14)

SECTION-C

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

- 14. Determine the constants a and b such that $v = [2xy + 3yz, x^2 + axz 4z^2, 3xy + 2byz]$ is irrotational.
- 15. Evaluate the line integral $\int_{c} F \cdot r' ds$ by Stoke's theorem where C is the circle $x^2 + y^2 = 4$, z = -3, oriented counterclockwise and $F = [y, xz^3, -zy^3]$.
- 16. Using Newton's forward difference formula, find the sum $S_n = 1^3 + 2^3 + 3^3 + ... + n^3$.
- 17. Find a root of the equation $4e^{-x} \sin x 1 = 0$ by Regula-Falsi method, given that the root lies between 0 and 0.5.

K16U 0623

18. From the following table of values of x and y, obtain $\frac{dy}{dx}$ at x = 0.6.

x	0.4	0.5	0.6	0.7	0.8
у	1.5836	1.7974	2.0442	2.3275	2.6511

19. From the Taylor series for y(x), find y(0.1) correct to four decimal places if y(x) satisfies $y'=x-y^2$ and y(0)=1. (4×3=12)

SECTION-D

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

20. Show that if C is represented by r(t) with arbitrary t, then the curvature is given

by K(t) =
$$\frac{\sqrt{(r'.r')(r''.r'')-(r'.r'')^2}}{(r'.r')^{3/2}}.$$

21. Evaluate $\iint_S F$. ndA where F = [x, xy, z], S the complete boundary of $x^2 + y^2 \le 1$, $0 \le z \le h$.

22. Evaluate $I = \int_{0}^{\pi/2} \sqrt{\sin x} \, dx$ using Simpson's $\frac{1}{3}$ -Rule with $h = \pi/12$.

23. Solve the initial value problem defined by $\frac{dy}{dx} = \frac{3x+y}{x+2y}$, y(1) = 1 and find y(1.2) = 1 and y(1.4) by the Runge-Kutta fourth order formula. (2x5=10)