19. Given the still electrical equation $\frac{dy}{dx} = \frac{y^2}{y^2+y}$ with the initial condition y=0 when x=0, use Figure 1 counts matrice to obtain y for x=0.5.

Answerburg 2 mustices from emong the oppositions 20 to 23. These questions 5 marks easily.

in Egistal and S. 4. (b) and

To Establish [15- 1-56, others F = Jy2 x2, Gz2], Sans portion of the paraboloid

Sate that varyers dilber outs for the danger on supplications are sunder a given convert. A

the control of the same of the

Y 25 18 14 11 12.6 16 18 20 20

. Use Ruspersons found order formula to find y(U.2) and y(0.4) given the

K17U 0637

Reg. No. :

Name :

IV Semester B.Sc. Degree (CBCSS – Reg./Supple./Imp.)

Examination, May 2017
(2014 Admn. Onwards)

COMPLEMENTARY COURSE IN MATHEMATICS
4C04 MAT – CH : Mathematics for Chemistry – IV

Time: 3 Hours Max. Marks: 40

D=2-13-benefit and SECTION-A bottom noetical -notwell set !!

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Give the parametric representation of the straight line through (5, 1, 2) and (11, 3, 0).
- 2. Evaluate $\int_{(5,0)}^{(0,5)} (y^2 e^{2x} dx + y e^{2x} dy)$.
- 3. Give the Newton's forward difference interpolation formula.
- 4. What do you mean by interpolation?

 $(4 \times 1 = 4)$

SECTION-B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. Find the tangent to the curve C: $r(t) = [t, t^2, 0]$ at the point P: (2, 4, 0).
- 6. Is there a vector field v on R^3 such that curl $v = [x \sin y, \cos y, z xy]$? Justify.
- 7. Find the directional derivative of $f(x, y, z) = (x^2 + y^2 + z^2)^{-1/2}$ at P: (4, 2, -4) in the direction of a = [1, 2, -2].

- 8. Find a parametric representation and a normal vector to the elliptic paraboloid, $z = 4x^2 + y^2$.
- 9. Use Green's theorem to evaluate ∫F(r)-dr counter clockwise around the boundary curve C of the region R, where F = [y sin x, 2x cos y], R the square with vertices $(0, 0), (\pi/2, 0), (\pi/2, \pi/2), (0, \pi/2).$
- 10. Calculate $\int F(r) \cdot dr$ where $F = [\cosh x, \sinh y, e^z]$, $C : r = [t, t^2, t^3]$ from (0, 0, 0)to (1/2, 1/4, 1/8).
- 11. Use Newton-Raphson method to find a root of the equation $x^3 2x 5 = 0$.
- 12. Given $\frac{dy}{dx} = 1 + xy$, y(0) = 1, find y(0.1) correct to four decimal places, by Taylor
- Explain Euler's method for the solution of a differential equation. $(7 \times 2 = 14)$

SECTION-C

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

- 14. Find the velocity, speed and acceleration of the motion given by $r(t) = [5 \cos t, \sin t, 2t]$ at the point P: $[5/\sqrt{2}, 1/\sqrt{2}, \pi/2]$.
- 15. Calculate the line integral $\oint \mathbf{F} \cdot \mathbf{r}' ds$, by Stokes's theorem where $\mathbf{F} = [4z, -2x, 2x]$, C the intersection of $x^2 + y^2 = 1$ and z = y + 1.
- 16. Certain corresponding values of x and log₁₀x are (300, 2.4771), (304, 2.4829), (305, 2.4843) and (307, 2.4871). Find log₁₀ 301, using Lagrange's formula.
- 17. Use the method of false position to find a real root, correct to three decimal places of the equation, $x^3 + x^2 + x + 7 = 0$.

K17U 0637

18. The table below gives the values of $\tan x$ for 0.10 < x < 0.30. Find $\tan 0.12$.

X	0.10	0.15	0.20	0.25	0.30
tan x	0.1003	0.1511	0.2027	0.2553	0.3093

19. Given the differential equation $\frac{dy}{dx} = \frac{x^2}{v^2 + 1}$ with the initial condition y = 0 when $(4 \times 3 = 12)$

x = 0, use Picard's method to obtain y for x = 0.5.

SECTION-D

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

20. Let f(x, y, z) = zy + yx, y = [y, z, 4z - x], $w = [y^2, z^2, x^2]$. Find:

- i) grad f at (3, 4, 0)
- ii) f grad f at (3, 4, 0) and
- iii) div (v x w).
- 21. Evaluate $\iint F \cdot ndA$, where $F = [y^3, x^3, 3z^2]$, S the portion of the paraboloid $z = x^2 + y^2, z \le 4.$
- 22. State the trapezoidal rule for finding an approximate area under a given curve. A curve is given by the points (x, y) given below. Estimate the area bounded by the curve, the x-axis and the extreme ordinates.

x	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
у	23	19	14	11	12.5	16	19	20	20

23. Use Runge-Kutta fourth order formula to find y(0.2) and y(0.4) given that

$$y'_{\cdot} = \frac{y^2 - x^2}{y^2 + x^2}$$
, $y(0) = 1$. (2x5=10)