(f) (f)=(6)(1)

- 23. Use Simpson's rule with x = 4 to evaluate $\int_{0}^{5} 5x^{4} dx$
- 24. Use reduction formula to evaluate:

a)
$$\int_{0}^{\pi/2} \sin^5 x \cos^3 x dx$$

- b) $\int x^m (\log x)^n$ when m and n are integers.
- 25. a) Find the area of the region enclosed by the parabola $y^2 = 4ax$ and $x^2 = 4by$.
 - b) Find the volume of the solid obtained by revolving the Cardioid $\gamma = a(1 + \cos \theta)$ about the initial line. (3x3=9)

1000000	-		-	-	m11:18
	ш	81111	(III)	100	
11000000	ш	1111	ш	ш	B 1 (
11881881	ш	BURR	ARITE	11881	380,18

M 6328

Reg. No.:

ame :

IV Semester B.Sc. Degree (CCSS – Regular/Supple./Improv.)
Examination, May 2014
CORE COURSE IN MATHEMATICS
4B04 MAT : Calculus

Time: 3 Hours

Max. Weightage: 30

Fill in the blanks:

- 1. a) The function y = | x | is continuous at x = 0 but not _____
 - b) The function $y = \frac{\sin x}{x}$ has a _____ discontinuity at x = 0.

c) If
$$\sqrt{5-2x^2} \le f(x) \le \sqrt{5-x^2}$$
, $\lim_{x\to 0} f(x) =$ _____

d) The function
$$y = \sin\left(\frac{1}{x}\right)$$
 has no limit as $x \to$ _____ (W=1×1=1)

2. a)
$$\int_{0}^{2} \frac{6x^{2}}{\sqrt{2x^{3}+9}} dx = \underline{\hspace{1cm}}$$

b) State the integral existence theorem.

c) Evaluate
$$\int \frac{(z+1)}{\sqrt[3]{3z^2+6z+5}} dz$$
.

 $(W=1\times1=1)$

Answer any 5 from the following (Wt. 1 each):

- 3. a) Find $\lim_{x \to \infty} \left(2 + \frac{\sin x}{x} \right)$.
 - b) $\lim_{\theta \to 0} \left(\frac{1}{\theta} \frac{1}{\sin \theta} \right)$
- 4. State maximum-minimum theorem for continuous function.
- Find two positive numbers whose sum is 20 and whose product is as large as possible.
- 6. State Mean value theorem.
- 7. Show that equation $x^3 + 3x + 1 = 0$ has exactly one root.
- Find the absolute maximum and minimum values of the function y = x³ − 3x + 2, 0 ≤ x ≤ 2 on the closed interval [0, 2].
- 9. Replace $(x-2)^2 + y^2 = 4$ by a polar equation.
- 10. Find b for which $f(x) = x^3 + bx^2 + cx + d$ have a point of inflexion at x = 1; where a, b, c, d are constants. (5x1=5)

Write any seven from the following (Wt. 2 each):

- 11. Find the nth derivative of e4x cos3x.
- 12. State Leibuitz' theorem and use it to prove that if $y = e^{\tan^{-1}x}$ $(1+x^2)y_{x+2} + [2(n+1)x-1]y_{n+1} + x(n+1)y_n = 0.$
- 13. Find the asymptotes of $y^3 + x^2y + 2xy^2 y + 1 = 0$.
- 14. Find the Maclaurin's series expansion of y = log cos hx.
- 15. Find the radius of curvature at any ' θ ' on the curve $x = a(\theta \sin \theta)$; $y = a(1 \cos \theta)$.

-3-

M 6328

- 16. Find the evolute of four Cusped hypocycloid $x^{2/3} + y^{2/3} = a^{2/3}$.
- 17. Show that:

i)
$$\int_{0}^{\infty} \frac{dx}{1+x^2}$$
 is convergent.

- ii) $\int_{1}^{\infty} \frac{dx}{x}$ is divergent.
- 18. Find the area enclosed by the cardioid. $\gamma = a(1 + \cos \theta)$
- One arch of the sine curve y = sinx revolves round the x-axis. Find the volume of solid so generated.
- 20. Find the length of the curve $y = \log \sec x$ between the points given by x = 0 and $x = \frac{\pi}{3}$. (7x2=14)

Write any 3 from the following (Wt. 3 each):

21. Find
$$\frac{dy}{dx}$$

- a) $y = \sin^m x \cdot \cos^4 x \cdot \cosh^2 x$.
- b) if $x^y = e^{x-y}$ prove that $\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$.
- c) $x = a(\theta + \sin \theta)$; $y = a(1 \cos \theta)$.

$$d) \quad y = tan^{-1} \left(\frac{x}{\sqrt{a^2 - x^2}} \right).$$

22. State and prove fundamental theorem of Calculus.