21. Find the forther following: •

K16U 0514

Reg. No. :

Name :

IV Semester B.Sc. Degree (CCSS - Supple./Imp.) Examination, May 2016 CORE COURSE IN MATHEMATICS 4B04 MAT : Calculus

(2013 and Earlier Admissions)

Time: 3 Hours

Max. Weightage: 30

Fill in the blanks:

- 1. a) _____ is an example for a function which continuous at x = 0 and has no derivative at x = 0.
 - b) $\frac{d}{dx}(1-x^2)^{-1/2} = \underline{\hspace{1cm}}$
 - c) If $\sqrt{5-2x^2} \le f(x) \le \sqrt{5-x^2}$ then $\lim_{x\to 0} f(x) =$ _____.
 - d) The function $y = \sin\left(\frac{1}{x}\right)$ has no limit as $x \to$ _____. W = 1
- 2. a) $\int \frac{2z}{\sqrt[3]{z^2+1}} dz = \frac{1}{12}$
 - b) $\int_{-1}^{1} 5x^4 \sqrt{x^5 + 1} \, dx =$
 - c) $\Gamma(n) = \underline{\hspace{1cm}} \text{for } n \in \mathbb{N}.$
 - d) $\int_{0}^{\infty} e^{-x^2} dx =$ ______.

Answer any five from the following (Wt: 1 each).

3. Find:

a)
$$\lim_{x\to 0} \frac{\sin x - x}{x^3}$$

b)
$$\lim_{\theta \to 0} \frac{1}{\theta} - \frac{1}{\sin \theta}$$

4. State maximum-minimum theorem for continuous function.

P.T.O.

K16U 0514

- Find two positive numbers whose sum is 20 and whose product is as large as possible.
- 6. State mean value theorem.
- 7. Show that the equation $x^3 + 3x + 1 = 0$ has exactly one root.
- 8. State Rolle's theorem.
- 9. Replace $(x-5)^2 + y^2 = 25$ by a polar equation.
- 10. Find b for which $f(x) = x^3 + bx^2 + cx + d$ have a point of inflexion at x = 1; where a, b, c, d are constants. (5x1=5)

Write any 7 from the following (Wt: 2 each)

- 11. Find the nth derivative of
 - a) ex.cos2x

b)
$$\frac{x+1}{x^2-4}$$

- 12. Find the asymptotes of $y^3 + x^2y + 2xy^2 y + 1 = 0$.
- 13. Prove that the asymptotes of $x^2y^2 = c^2(x^2 + y^2)$ are the sides of a square.
- 14. Using Maclaurin's series, obtain the expansion of e^xsinx upto the term containing x⁵.
- 15. Find the radius of curvature at (x, y) for the curve $a^2y = x^3 a^3$.
- 16. Find the evolute of the parabola $y^2 = 4ax$.
- 17. Evaluate:

a)
$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 2}$$

b)
$$\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$$

-3-

K16U 0514

- 18. Find the length of the curve $y = \log \sec x$ between the points given by x = 0 and $x = \pi/3$.
- 19. One arch of the sine curve y = sin x revolves round the x axis. Find the volume of the solid so generated.
- 20. Find the area enclosed by the cardioid $r = a (1 + \cos \theta)$. (7×2=14)

Write any 3 from the following (Wt: 3 each).

- 21. Find $\frac{dy}{dx}$ for the following:
 - a) If $x = a(\theta + \sin \theta)$; $y = a(1 \cos \theta)$
 - b) If $x^y = y^x$ prove that $\frac{dy}{dx} = \frac{y(y x \log y)}{x(x y \log x)}$.
 - c) $y = (1 + \log x)^{x^{x}}$.
- 22. State and prove fundamental theorem of calculus.
- 23. Use Simpson's rule with n = 4 to evaluate $\int_{0}^{1} 5x^{4} dx$.
- 24. Use reduction formula to evaluate
 - a) \int x^e ax dx

- b) fx sinmxdx
- 25. a) Find the perimeter of the cardioid $r = a(1 \cos \theta)$
 - b) Find the volume of the solid obtained by revolving the cardioid $r = a(1 + \cos \theta)$ about the initial line. (3x3=9)