			III	II		III	III	III	III		
--	--	--	-----	----	--	-----	-----	-----	-----	--	--

K19U 2276

Reg. No. :

:

V Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.)

Examination, November-2019

(2014 Admn. Onwards)

Core Course in Statistics

5B 06 STA: MATHEMATICAL ANALYSIS - I

(Use of calculators and statistical tables are permitted)

Time: 3 hours

Max. Marks: 48

PART - A (Short Answer)

Answer ALL the questions.

 $(6 \times 1 = 6)$

- 1. Define the limit superior and inferior of a sequence.
- 2. Discuss the monotonicity of the sequence $\{1/n\}$, $n \in N$.
- 3. Define an alternating series.
- 4. Discuss the continuity of the function $f(x) = \begin{cases} x+1 & \text{if } x < 2 \\ 3 & \text{if } x \ge 2 \end{cases}$ at the point x = 2.
- 5. Evaluate $\lim_{x \to 3} \frac{x^4 3^4}{x 3}$
- 6. Define differentiability of a function at a point.

K19U 2276

PART - B (Short Essay)

Answer any SEVEN questions.

 $(7 \times 2 = 14)$

- 7. Show that for any real number x, $\lim_{n \to \infty} \frac{x^n}{n!} = 0$.
- 8. Show that every bounded sequence has a unique limit point.
- 9. Show that the series $\frac{1}{1^p} \frac{1}{2^p} + \frac{1}{3^p} \dots$ converges for p > 0, using Leibnitz test.
- 10. Distinguish between absolute and conditional convergence.
- 11. Distinguish between continuity and uniform continuity.
- 12. Show that the function $f(x) = \begin{cases} x, when & x \text{ is irrational} \\ -x, when & x \text{ is rational} \end{cases}$ is continuous only at x = 0.
- 13. Discuss the continuity of the function f(x) = [x] at the integer values of x.
- 14. State Darboux's theorem.
- 15. State Taylor's theorem.

PART - C (Essay)

Answer any FOUR questions.

 $(4 \times 4 = 16)$

- **16.** Show that the sequence $\{b_n\}$ where $b_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}}$ converges to 1.
- 17. If $\{a_n\}$ and $\{b_n\}$ are two sequences with limits a and b respectively and $a_n \le b_n$, $\forall n$ then show that $a \le b$.
- 18. What do you mean by a positive term series? Explain with an example. Also state a necessary and sufficient condition for its convergence.
- 19. Test for the convergence of the series $\sum \frac{n^2-1}{n^2+1}x^n$ using, D' Alembert's Ratio test.
- 20. Prove or disprove: Every continuous function is uniformly continuous.
- Establish the statement. Lagrange's mean value theorem is a particular case of Cauchy's mean value theorem.

(3)

K19U 2276

PART - D (Long Essay)

Answer any TWO questions.

(2×6=12)

- 22. State and prove Cauchy's general principle of convergence.
- 23. If $\sum u_n$ and $\sum v_n$ are two positive term series and $u_n \le kv_n$, $\forall n \ge m$, $k \ne 0$, then show that
 - i) $\sum u_n$ is convergent if $\sum v_n$ is convergent
 - ii) $\sum v_n$ is divergent if $\sum u_n$ is divergent
- 24. Show that every continuous function defined in a closed interval is necessarily bounded.
- 25. State and prove Rolle's Theorem. Examine the validity of the theorem for the function $f(x) = x^4 3x^2 + 1$ in [-1,1].