11000	000110	18 8 8 1	10001	BUILD	HBI	1001
100		-	380	BII DE	ш	ш
100	E 61 13	310	ш	1118	ш	ш

entrocetto equation = x = y, y(0) = 1 (Weightago: 7×2=14)

M 7152

Reg.	No), :	
lame	9 :		

V Semester B.Sc. Degree (CCSS – Reg./Supple./Imp.)

Examination, November 2014

CORE COURSE IN MATHEMATICS

5B09 MAT: Differential Equations and Numerical Analysis

Max. Weightage: 30
0 is
characteristic equation of ution is
hen y ₁ (t) and y ₂ (t) are
0 is exact if(Weightage 1)

Answer any six from the following (Weightage 1 each):

- 2. Determine the order of the equation $\frac{d^2y}{dt^2} + \sin(t+y) = \sin t$. Also state whether the equation is linear or non-linear.
- 3. Solve $\frac{dp}{dt} = 0.5p 150$.
- 4. Find the general solution of y'' + y' + y = 0.
- 5. Find the Wronskian of the vectors $x^{(1)}(t) = \begin{pmatrix} t \\ 1 \end{pmatrix}$ and $x^{(2)}(t) = \begin{pmatrix} t^2 \\ 2t \end{pmatrix}$.

- 6. Solve the boundary value problem y'' + 2y = 0, y(0) = 1, $y(\pi) = 0$.
- 7. Explain one dimensional wave equation.
- 8. Using Newton-Raphson method, find the square root of 2.
- 9. What do you mean by interpolation? State Newton's forward interpolation formula.
- 10. Apply Euler's method to solve the initial value problem y' = x + y, y(0) = 0 to find y(0.2) and y(0.4). Take h = 0.2. (Weightage: $6 \times 1 = 6$)

Answer any seven from the following (Weightage 2 each):

- 11. Determine the value of r for which the differential equation $t^2y'' 2ty' + 2y = 0$ has solution of the form $y = t^r$, r > 0.
- 12. Solve the initial value problem $ty' + 2y = 4t^2$, y(1) = 2
- 13. Show that $y_1(t) = t^{\frac{1}{2}}$ and $y_2(t) = t^{-1}$ form a fundamental set of solution of $2t^2y'' + 3ty' y = 0$, t > 0.
- 14. Find the particular integral of $y'' 3y' 4y = 3e^{2t}$.
- 15. Find the solution of the initial value problem y'' + y' 2y = 2t, y(0) = 0, y'(0) = 1.
- 16. Using the method of separation of variables, solve one dimensional heat equation.
- 17. Find the solution u(x, y) of Laplace's equation in the rectangle 0 < x < a, 0 < y < b satisfying the boundary conditions u(0, y) = 0, u(a, y) = 0, 0 < y < b; u(x, b) = 0, u(x, 0) = x(a x), 0 < x < a.
- 18. Using matrix inversion method, solve the equations x + y + z = 6; 3x + y + z = 8; 2x + 2y 3z = -7.
- 19. Using trapezoidal rule evaluate $\int_{0}^{1} e^{-x^2} dx$ by dividing the interval into 5 sub-intervals.

-3-

M 7152

20. Using Picard's process of successive approximation, obtain a solution upto the fourth approximation from the equation $\frac{dy}{dx} = x + y$, y(0) = 1. (Weightage: 7×2=14)

Answer any three from the following (Weightage 3 each):

- 21. Solve the differential equation $(y \cos x + 2xe^y) + (\sin x + x^2e^y 1)y' = 0$.
- 22. Solve the initial value problem y' = 2t(1 + y), y(0) = 0 by the method of successive approximation.
- 23. Using method of variation of parameters, solve y" + 4y = tan2t.
- 24. Given that the values

0

x: 5 7 11 13 17

f(x): 150 392 1452 2366 5202

Evaluate f(9) using Lagrange's interpolation formula.

25. Using Runge-Kutta method of fourth order, find approximate values of y(0.1) and $y(0.2) \text{ from } \frac{dy}{dx} = x + y^2, \text{ given that } y(0) = 1.$ (Weightage: $3 \times 3 = 9$)