(r.0)y to suley edinistic holitaritic		to guagong pilm	
	y 2 y(0) =1		

22. Find an integrating factor for the equation and solve $(3xy + y^2) + (x^2 + xy)y' = 0$

Time: 3 Hours

M 9815

Max. Weightage: 30

THE REPORT OF THE PERSON	129
Reg. No. :	CET WALLERARY
Name :	THALAS 3E

V Semester B.Sc. Degree (CCSS-Reg./Supple./Imp.) Examination,
November 2015
CORE COURSE IN MATHEMATICS
5B 09 MAT : Differential Equations and Numerical Analysis

1.	1. Fill in the blanks :	
	a) Characteristic equation of ay" + by' + cy = 0 is	2 Sqlve m - y - 2 + 1
	b) If the roots of the characteristic equation of ay" + b repeated, say $\lambda = 3$, 3, then the general solution is	23 17
	c) Wronskian of e ^{-2t} and e ^{-3t} is	
	d) Two functions f(t) and g(t) are said to be linearly depe	ndent if(Weightage 1

Answer any six from the following: (Weightage 1 each)

- 2. Determine the order of the equation $u_{xx} + u_{yy} + uu_x + uu_y + u = 0$. Also state whether the equation is linear or non-linear.
- 3. Solve $\frac{dy}{dt} = ay b$, $y(0) = y_0$.
- 4. Find the general solution of y'' + 9y = 0.
- 5. Find the Wronskian of the vectors $\mathbf{x}^{(1)}(t) = \begin{pmatrix} e^t \\ e^t \end{pmatrix}$ and $\mathbf{x}^{(2)}(t) = \begin{pmatrix} t^2 \\ 2t \end{pmatrix}$
- 6. Solve the boundary value problem y'' + y = 0, y(0) = 1, $y(\pi) = a$
- 7. Explain one dimensional heat equation.

- 8. Using Newton-Raphson method, find the positive solution of $2 \sin x = x$.
- What do you mean by backward differences? State Newton's backward interpolation formula.
- 10. Apply Euler's method to solve the initial value problem y' = x + y, y(0) = 0 to find y(0.1) and y(0.2). Take h = 0.1. (Weightage: $6 \times 1 = 6$)

Answer any seven from the following: (Weightage 2 each)

- 11. Determine the value of r for which the differential equation $t^2y'' 4ty' + 4y = 0$ has solution of the form $y = t^r$, r > 0.
- 12. Solve $\frac{dy}{dt} + \frac{1}{2}y = 2 + t$.
- 13. Given that $y_1(t) = t^{-1}$ is a solution of $2t^2y'' + 3ty' y = 0$, t > 0. Find a second linearly independent solution.
- 14. Find the particular integral of $y'' 3y' 4y = -8e^t \cos 2t$.
- 15. Find the solution of the initial value problem $y'' + 4y = 3\sin 2t$, y(0) = 2, y'(0) = -1.
- 16. Using the method of separation of variables, solve Laplace's equation.
- 17. Consider a elastic string of length 30 cm that satisfies the wave equation 4u_{xx} = u_{tt}, 0 < t < 30, t > 0. Assume that the ends of the strings are fixed and the string is set in motion with no initial velocity from the initial position.

$$u(x, 0) = \begin{cases} x/10 & 0 \le x \le 10 \\ (30-x)/20 & 10 < x \le 30 \end{cases}$$

Find the displacement u(x.t) of the string.

- 18. Using Gauss elimination method, solve the equations x + 2y z = 3; 3x y + 2z = 1; 2x 2y + 3z = 2 and x y + z = -1.
- 19. Using Simpson's rule evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ by dividing the interval into 10 sub-intervals.

20. Using Picard's process of successive approximation, obtain the value of y(0.1) from the equation $\frac{dy}{dx} = x - y^2$, y(0) = 1. (Weightage: 7x2=14)

Answer any three from the following: (Weightage 3 each)

- 21. Solve the initial value problem $\frac{dy}{dx} = \frac{3x^2 + 4x + 2}{2(y 1)}$, y(0) = -1 and determine the interval in which the solution exist.
- 22. Find an integrating factor for the equation and solve $(3xy + y^2) + (x^2 + xy)y' = 0$.
- 23. Using method of variation of parameters, solve $y'' + 2y' + y = 3e^{-1}$.
- 24. Given that the values:

x: 5 7 11 13 17 f(x): 150 392 1452 2366 5202

Evaluate f(9) using Newton's divided difference formula.

25. Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = x + y$ with y = 1, where x = 0 at x = 0.2 and x = 0.4 (Weightage: 3x3=9)