K21U 0128

26. Solve by separating variables, $u_{u} - u_{u} = 0$.

- 27. Find the solution of the initial value problem y' = 2y x, y(0) = 1, by performing two iterations of the Picard's method.
- 28. A function f(x) representing the following data has a minimum in the interval (0.5, 0.8). Find this point of minimum:

0.7 length end to nottule ent at letw . 81

f(x): 1.3254 1.1532 0.9432 1.0514 may 1 100 1 1930 0.0

amol lamon of il molaned bits 0 SECTION - Daupe will to eggl and villnebt - 00

Answer any two questions. Each question carries 6 marks.

- 29. Derive the solution of one dimensional heat equation.
- 30. Using Newton Raphson method, obtain the root of the equation $x^3 5x + 1 = 0$ correct to three decimal places. Assume $x_0 = 0$.
- 31. Evaluate $\int_0^1 \frac{dx}{3+2x}$ using Simpson's rule with n = 2. Compare with the exact
- 32. Solve the initial value problem, y' = x (y x), y (2) = 3 in the interval [2, 2.4] using the classical Runge-Kutta fourth order method with the step size h = 0.2.
- 33. The following table of the function $f(x) = e^{-x}$ is given by

x: 0.2

f(x): 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966 0.4493

- i) Using Gauss forward central difference formula, compute f (0.55).
- ii) Using Gauss backward central difference formula, compute f (0.45).
- 34. Find the D'Alembert's solution of wave equation.

K21U 0128

Reg. No.:....

Name :

Sixth Semester B.Sc. Degree (CBCSS - Reg./Supple./Improv.) Examination, April 2021

(2014-2018 Admissions) **CORE COURSE IN MATHEMATICS**

6B11 MAT: Numerical Methods and Partial Differential Equations

Time: 3 Hours Max. Marks: 48

SECTION - A

Answer all the questions. Each question carries 1 mark.

- 1. Write the Newton's forward difference interpolation polynomial.
- 2. Give the truncation error in Euler method.
- 3. State the Laplacian in polar coordinates.
- 4. Give the one dimensional wave equation.

SECTION - B - 681 At- 65 - 6 (a) 1

Answer any eight questions. Each question carries 2 marks.

- 5. Find an interval which contains the root of the equation $x = e^{-x}$.
- 6. Perform two iterations of the bisection method to obtain the smallest positive root of the equation $x^3 - 5x + 1 = 0$.
- 7. Define the finite difference operators:

i) Forward ii) Backward and iii) Central

8. Prove that

$$\Delta\!\left(\frac{f_i}{g_i}\right)\!=\!\frac{g_i\Delta f_i-f_i\Delta g_i}{g_ig_i+1}$$

9. Construct the divided difference table for the following data :

10. Find the Lagrange interpolating polynomial that fits the data values :

x: 2.5 3.5

f(x): 6 8

Interpolate at x = 3.

11. Using the method $\frac{1}{2h}[-3f_0 + 4f_1 - f_2]$, obtain an approximate value of f'(-3) with h = 2, for the following data:

$$f(x)$$
: -25 -14.125 -7 $= 10.10348$

- 12. What is meant by quadrature rule and error of approximation in numerical integration?
- 13. Obtain the approximate value of y(1.3) for the initial value problem $y' = -2xy^2$, y(1) = 1, using Euler method, with h = 0.1.
- 14. Find the approximate value of y(0.2) for the initial value problem $y = x^2 + y^2$, y(0) = 1 with h = 0.1, using Heun's method.
- 15. Discuss about the Runge Kutta method of solving ordinary differential equations.

- 16. Verify that $u = x^2 + t^2$ is a solution of the one dimension wave equation.
- 17. Solve the partial differential equation $u_{xy} u_x = 0$.
- 18. Verify that $u(x, y) = a \ln (x^2 + y^2) + b$ is a solution of the Laplace equation and determine the values of a and b, if u satisfies the boundary conditions u = 0 on $x^2 + y^2 = 1$ and u = 3 on $x^2 + y^2 = 4$.
- 19. What is the solution of one dimensional wave equation, as given by Fourier series? Deduce it for a given initial velocity.
- 20. Identify the type of the equation $4u_{xx} u_{yy} = 0$ and transform it to normal form.

Answer any four questions. Each question carries 4 marks.

- 21. Evaluate $\sqrt{5}$ using the equation $x^2 5 = 0$ by applying the fixed point iteration method.
- 22. Perform three iterations of the regula-falsi method to obtain the smallest positive root of $x^3 5x + 1 = 0$.
- 23. Find the second divided difference of $f(x) = \frac{1}{x}$, using the points x_0, x_1, x_2 .
- 24. For the data

Find an approximation to f (0.1) by using Newton's forward difference formula

25. Evaluate the following integral using trapezoidal rule with n = 2

$$\int_0^1 \frac{dx}{3+2x} \, dx$$