			Olyrio e. Parale3			
	iner ettuži	Hungo -				
g la - 8					S ON	
				in the re		
noltenaji m						

Reg. No.:

Name :

K20U 0128

VI Semester B.Sc. Degree (CBCSS-Reg./Supple./Improv.)

Examination, April 2020

(2014 Admission Onwards)

CORE COURSE IN MATHEMATICS

6B11MAT : Numerical Methods and Partial Differential Equations

Time: 3 Hours Max. Marks: 48

SECTION - A

All the 4 questions are compulsory. They carry 1 mark each.

- 1. State the intermediate value theorem for finding the real root of an equation.
- 2. Complete the expression $\Delta = E -$
- 3. Give the maximum bound for error R,(f) in trapezoidal rule.
- 4. For a function $u(r, \theta, t)$, give its Laplacian in Polar co-ordinates.

SECTION - B

Answer any 8 questions from among the questions 5 to 14. These questions carry 2 marks each.

- 5. Find $\sqrt{15}$ by Bisection method, correct to two decimal places.
- Find a root of the equation log x cos x = 0, where x is in radians, correct to two decimal places, using Regula Falsi method.
- 7. Show that $\Delta \left(\frac{f}{g_i} \right) = -\frac{g_i \Delta f_i f_i \Delta g_i}{g_i g_{i+1}}$

K20U 0128

-2-

 Find log_e (2.7) from the following table using Lagranges interpolation formula.

X	2	2.5	3	
log _e (x)	0.6932	0.9163	1.0986	

- 9. Evaluate $\sqrt{\frac{2}{\pi}} \int_{0}^{1} e^{-x^2/2} dx$, using Simpson's 1/3 rule, taking h = 0.25.
- 10. Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ using Trapezoidal rule with h = 0.25.
- 11. Find a solution to the initial value problem y' = 2y x, y(0) = 1, by performing two iterations of the Picard's method.
- 12. Find y(1.2), given the differential equation $y' = -2xy^2$, with the condition y(1) = 1, using Taylor's series with step size h = 0.1.
- 13. Give the Fourier series solution of the one dimensional wave equation, with fixed ends and initial conditions u(x, 0) = f(x) and $\frac{\partial u}{\partial t}|_{t=0} = g(x)$.
- 14. Solve the equation $u_w = 0$ where u is a function of x and y.

SECTION - C

Answer any 4 questions from among the questions 15 to 20. These questions carry 4 marks each.

- Find a real root of the equation x³ + x² 1 = 0 by General iteration method, correct to two decimal places.
- Using Newtons divided difference formula, find a cubic polynomial for the following data. Hence find f(3).

X	0	1	2	4
f(x)	1	1	2	5

 The function f(x) represented by the following data has a minimum in the interval (0.5, 0.8). Find this point of minimum and the minimum value.

x	0.5	0.6	0.7	0.8
f(x)	1.3254	1.1532	0.9432	1.0514

############## +3- K20U 0128

- 18. Find the approximate value of y(0.1) given that $y' = x^2 + y^2$, y(0) = 1 using three iterations of the Modified Euler's method with h = 0.1.
- 19. Given $\frac{dy}{dx} = y x$ with y(0) = 2, use Runge Kutta method of order two to find y(0.2) taking h = 0.1.
- 20. A stretched string of length l and fixed end points has initial displacement $y = a \sin \frac{\pi x}{l}$ from which it is released at time t = 0. Find the vertical displacement y(x, t) at any distance x from one end at time t.

SECTION - D

Answer any 2 questions from among the questions 21 to 24. These questions carry 6 marks each.

- 21. Find an interval of unit length which contains the smallest positive root of the equation e^x 2x² = 0. Hence find the root of this equation using Newton Raphson method correct to three decimal places.
- 22. The following table gives the value of e-x for some values of x:

x	0.2	0.3	0.4	0.5	0.6	0.7	0.8
e-x	0.8187	0.7408	0.6703	0.6065	0.5488	0.4966	0.4493

Determine the value of e-0.55 using Stirling's central difference formula.

23. Compute f'(0.2) and f"(0) from the following table.

x	0.0	0.2	0.4	0.6	0.8	1.0
f(x)	1.00	1.16	3.56	13.96	41.96	101.00

24. Find the temperature u(x, t) in a slab of length L whose ends are kept at zero temperature and whose initial temperature f(x) is given by

$$f(x) = \begin{cases} k, & \text{when } 0 < x < \frac{L}{2} \\ 0, & \text{when } \frac{L}{2} < x < L \end{cases}$$