1	+:	
	in the Committee of the	
4 Total		

M 8167

verlittell tet initer vitera serri inn inner	(5)
Reg. No. :	LE STEPHEN
Name :	THALASS

VI Semester B.Sc. Degree (CCSS - Reg./Supple./Improv.) Examination, May 2015

	RSE IN MATHEMATICS aber Theory and Cryptography (Elective)
Time: 3 Hours	Max. Weightage: 30
1. Fill in the blanks :	(Weight 1)
a) If p is a prime, then $a^p \equiv $ b) $\tau(180) = $	for any integer 'a'.
 c) A number-theoretic function f is whenever gcd (m, n) = 1. 	s said to be multiplicative if f (mn) =,
d) A block cipher with block leng called	th n and plain text and cipher space Z _m is
Answer any seven from the following	(Weightage 1 each)
Find gcd (12378, 3054).	
3. If p is a prime and p ab, prove that	at p a or p b.
4. Prove that any absolute pseudopr	ime is square free.
5. Show that the function σ is a mult	tiplicative function.
6. Prove that $\sum_{d/n} \mu(d) = 0$.	
7. For $u > 2$, prove that $\phi(u)$ is an ev	en integer.
8 If n is a prime prove that (n. 1) !	- (1) (mad n)

8. If p is a prime, prove that $(p-1)! \equiv (-1) \pmod{p}$.

P.T.O.

- 9. Solve the linear congruence equation 18x = 30 (mod 42).
- 10. Define the following:
 - a) Affine Cipher
 - b) The Hill Cipher.
- 11. Define the following with examples:
 - a) RSA modules
 - b) encryption component.

Answer any seven from the following:

(Weightage 2 each)

- Determine all solutions in positive integers of 123x + 360y = 99.
- 13. Solve the system of simultaneous congruences $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$.
- 14. If p is a prime and suppose that $p \nmid a$, prove that $a^{p-1} \equiv 1 \pmod{p}$.
- 15. Let n be a composite square free integer say $n = p_1, p_2, ..., p_r$, where the p_i are distinct primes. If $p_{i-1} \mid u-1$ for i=1,2,...,r, prove that n is an absolute pseudoprime.
- 16. If f is a multiplicative function and F is defined by $F(u) = \sum_{d/u} f(d)$, prove that F is also multiplicative.
- 17. Let F and f be two number-theoretic functions related by the formula $F(u) = \sum_{d/u} f(d)$, prove that $f(u) = \sum_{d/n} \mu \left(\frac{\mu}{d}\right) F(d)$.
- 18. If the integer u > 1 has the prime factorization $u = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$, prove that $\phi(u) = u \left(1 \frac{1}{p_1}\right) \left(1 \frac{1}{p_2}\right) \dots \left(1 \frac{1}{p_r}\right).$
- 19. Find the remainders when 250 and 4165 are divided by 7.

- 20. Which of the following schemes is a Crypto System ? What is the plain text space ? The Cipher text-space and the key space. Let ϵ = 726
 - 1) Each letter $\sigma \in \epsilon$ is replaced by $k\sigma \mod 26$, $K \in \{1, 2, ..., 26\}$.
- 21. Show that in the RSA cryptosystem the decryption exponent d can be chosen such that de $\equiv 1 \mod \text{lcm} (p-1, q-1)$.
- 22. Verify that encryption and decryption are inverse operations.

Answer any two from the following:

0

(Weight 4 each)

- 23. State and prove Chinese Remainder Theorem.
 - 24. Prove that the quadratic congruence $x^2 + 1 \equiv 0 \pmod{p}$, where p is an odd prime, has a solution if and only if $p \equiv 1 \pmod{4}$.
 - 25. Let (n, e) be a public RSA key and d, the corresponding private RSA key. Prove that $(m^e)^d \mod n \equiv m$ for any integer m with $0 \le m < n$.